精英家教网 > 高中数学 > 题目详情

【题目】若函数满足:对任意实数,方程的解的个数为偶数(可以是0个,但不能是无数个),则称为“偶的函数”.证明:

(1)任何多项式均不是偶的函数;

(2)存在连续函数是偶的函数.

【答案】(1)见解析;(2)见解析

【解析】

(1)注意到,多项式的定义域为R,将其划分为如下增减交替的单调区间:

其中,为所有的极值点.

不妨设的首项系数为正.

为奇数,则均为单调递增区间.

.

,则方程仅在区间上有一解,此时,不是偶的函数.

为偶数,则为单调递减区间,为单调递增区间.故k为奇数.从而,必存在一个极值恰被奇数个取到.

考虑方程的根,根据各区间的增减交替性,恰有偶数个区间含有这些根,每个区间内根的个数为1,但其中在极值点处取到的根均被计算了两遍,故应扣除奇数个.

因此,方程的根是奇数个,即不是偶的函数.

综上,任何多项式均不是偶的函数.

(2)构造一个的例子.

当x为正奇数或x=0时,定义=x;

当x为正偶数时,定义=x-2;

当x为负奇数时,定义=-x+1;

当x为负偶数时,定义=-x-1.

时,定义.

这样定义的函数是连续的.

可以验证,当时,无解;

时,恰有两个解;

时,恰有四个解.

故所构造的为一个偶的函数.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知抛物线Cy2=4x与椭圆E1ab0)有一个公共焦点F.设抛物线C与椭圆E在第一象限的交点为M.满足|MF|.

1)求椭圆E的标准方程;

2)过点P1)的直线交抛物线CAB两点,直线PO交椭圆E于另一点Q.PAB的中点,求△QAB的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,直线l的参数方程为(t为参数,0).以坐标原点为极点,x轴正半轴为极轴建立极坐标系,曲线C的极坐标方程为

(Ⅰ)写出曲线C的直角坐标方程;

(Ⅱ)若直线l与曲线C交于A,B两点,且AB的长度为2,求直线l的普通方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数(其中 为自然对数的底数)

(Ⅰ)若函数无极值,求实数的取值范围;

(Ⅱ)时,证明:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】2019年初,某高级中学教务处为了解该高级中学学生的作文水平,从该高级中学学生某次考试成绩中按文科、理科用分层抽样方法抽取人的成绩作为样本,得到成绩频率分布直方图如图所示,,参考的文科生与理科生人数之比为,成绩(单位:分)分布在的范围内且将成绩(单位:分)分为六个部分,规定成绩分数在分以及分以上的作文被评为“优秀作文”,成绩分数在50分以下的作文被评为“非优秀作文”.

1)求实数的值;

2)(i)完成下面列联表;

文科生/

理科生/

合计

优秀作文

6

______

______

非优秀作文

______

______

______

合计

______

______

400

ii)以样本数据研究学生的作文水平,能否在犯错误的概率不超过的情况下认为获得“优秀作文”与学生的“文理科“有关?

注:,其中.

0.15

0.10

0.05

0.025

0.010

0.005

0.001

2.072

2.706

3.841

5.024

6.635

7.879

10.828

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】阅读如图所示的程序框图,若输出的数据为141,则判断框中应填入的条件为( )

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在边长为的菱形中,交于点,将沿直线折起到的位置(点不与两点重合).

(1)求证:不论折起到何位置,都有平面

(2)当平面时,点是线段上的一个动点,若与平面所成的角为,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,四棱锥中,底面是直角梯形,,侧面底面,且为等腰直角三角形,的中点.

1)求证:平面

2)求直线与平面所成线面角的正切值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知,命题方程表示焦点在轴上的椭圆,命题方程表示双曲线.

(1)若命题是真命题,求实数的范围;

(2)若命题“”为真命题,“”是假命题,求实数的范围.

查看答案和解析>>

同步练习册答案