精英家教网 > 高中数学 > 题目详情
17.已知f(x)是定义在R上的不恒为0的函数,若对于任意的实数a、b都满足f(ab)=af(b)+bf(a),则函数f(x)(  )
A.是奇函数B.是偶函数
C.既是奇函数又是偶函数D.既不是奇函数又不是偶函数

分析 由题意可得给a,b赋值,即令a=b=1,可得f(1)=0,再令a=b=-1,可得f(-1)=0,令a=x,b=-1,即可得到答案.

解答 解:由题意可得:令a=b=1,则有f(1)=2f(1),
所以f(1)=0,
再令a=b=-1,则有f(1)=-2f(-1),
所以f(-1)=0,
若令a=x,b=-1,
所以有f(-x)=-f(x)+xf(-1)=-f(x),即f(-x)=-f(x),
所以f(x)为奇函数.
故选:A.

点评 本题考查了函数奇偶性的定义,即f(-x)与f(x)的关系,而研究抽象函数的奇偶性一般运用的方法是赋值法,此题是个基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

8.若椭圆$\frac{{x}^{2}}{5}$+y2=1的左、右焦点恰好是双曲线$\frac{{x}^{2}}{{a}^{2}}$-y2=1的左、右顶点,则双曲线的离心率为(  )
A.$\sqrt{6}$B.$\sqrt{5}$C.$\frac{\sqrt{6}}{2}$D.$\frac{\sqrt{5}}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.设等比数列{an}的首项为a1,公比为q(q>0),所有项和为1,则首项a1的取值范围是(0,1).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.设{an}是等差数列,a1+a3+a5=9,a1=9.则这个数列的公差等于(  )
A.1B.2C.-3D.-4

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.若函数f(x+1)=2x2+1,则函数f(x)=2x2-4x+3.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.已知幂函数f(x)=xα是偶函数,在[0,+∞)上递增的,且满足$f({\frac{1}{2}})>\frac{1}{2}$.请写出一个满足条件的α的值,α=$\frac{2}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.函数f(x)=a1-x+5(a>0且a≠1)的图象必过定点(1,6).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.我们国家正处于老龄化社会中,老有所依也是政府的民生工程.某市共有户籍人口400万,其中老人(年龄60岁及以上)人数约有66万,为了了解老人们的健康状况,政府从老人中随机抽取600人并委托医疗机构免费为他们进行健康评估,健康状况共分为不能自理、不健康尚能自理、基本健康、健康四个等级,并以80岁为界限分成两个群体进行统计,样本分布被制作成如下图表:

(Ⅰ)若采用分层抽样的方法再从样本中的不能自理的老人中抽取16人进一步了解他们的生活状况,则两个群体中各应抽取多少人?
(Ⅱ)估算该市80岁及以上长者占全市户籍人口的百分比;
(Ⅲ)政府计划为80岁及以上长者或生活不能自理的老人每人购买1000元/年的医疗保险,为其余老人每人购买600元/年的医疗保险,不可重复享受,试估计政府执行此计划的年度预算.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.△ABC的内角A,B,C的对边分别为a,b,c,已知bcosC=(2a-c)cosB.
(Ⅰ)求B;
(Ⅱ)若c=2,b=3,求△ABC的面积.

查看答案和解析>>

同步练习册答案