精英家教网 > 高中数学 > 题目详情

【题目】在平面直角坐标系中,直线的参数方程为为参数).以坐标原点为极点,轴正半轴为极轴建立极坐标系,曲线的极坐标方程为

1)求曲线的直角坐标方程和直线的普通方程;

2)若直线与曲线交于两点,设,求的值.

【答案】1;(2.

【解析】

1)在曲线的极坐标方程中,由可将曲线的极坐标方程化为直角坐标方程,在直线的参数方程中消去参数,可得出直线的普通方程;

2)将直线的参数方程表示为为参数),并设点对应的参数分别为,将直线的参数方程与曲线的普通方程联立,得出关于的二次方程,并列出韦达定理,可计算出的值.

1)在曲线的极坐标方程中,由可得出曲线的普通方程为,即.

在直线的参数方程中消去,即

2)直线的参数方程表示为为参数),

并设点对应的参数分别为

将直线的参数方程与曲线的直角坐标方程联立,消去.

由韦达定理得.

因此,.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知直线过点,圆:,直线与圆交于两点.

) 求直线的方程;

)求直线的斜率的取值范围;

(Ⅲ)是否存在过点且垂直平分弦的直线?若存在,求直线斜率的值,若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)当时,求曲线在点处的切线方程;

(2)求函数f(x)的极值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】随机调查某社区80个人,以研究这一社区居民在晚上8点至十点时间段的休闲方式与性别的关系,得到下面的数据表:

1)将此样本的频率估计为总体的概率,随机调查3名在该社区的男性,求这3人中至少有1人是以看书为休闲方式的概率;

2)根据以上数据,能否有99%的把握认为“在晚上8点至十点时间段的休闲方式与性别有关系?”

参考公式:,其中.

参考数据:

0.15

0.10

0.05

0.025

0.010

2.072

2.706

3.841

5.024

6.635

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥中,O的中点.

1)证明:平面

2)若,求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知是圆锥的高,是圆锥底面的直径,是底面圆周上一点,的中点,平面和平面将圆锥截去部分后的几何体如图所示.

1)求证:平面平面

2)若,求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列判断正确的是( )

A.”是“”的充分不必要条件

B.函数的最小值为2

C.时,命题“若,则”为真命题

D.命题“”的否定是“

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】将数列的前n项和分成两部分,且两部分的项数分别是i,若两部分的和相等,则称数列的前n项和能够进行等和分割.

,试写出数列的前4项和的所有等和分割;

求证:等差数列的前项和能够进行等和分割;

若数列的通项公式为:,且数列的前n项和能进行等和分割,求所有满足条件的n

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已如椭圆C:的两个焦点与其中一个顶点构成一个斜边长为4的等腰直角三角形.

(1)求椭圆C的标准方程;

(2)设动直线l交椭圆CPQ两点,直线OPOQ的斜率分别为kk.,求证OPQ的面积为定值,并求此定值.

查看答案和解析>>

同步练习册答案