精英家教网 > 高中数学 > 题目详情
2.若$\overrightarrow{a}$=(3,4),则与$\overrightarrow{a}$共线的单位向量是(  )
A.(3,4)B.($\frac{3}{5}$,$\frac{4}{5}$)C.($\frac{3}{5}$,$\frac{4}{5}$)或(-$\frac{3}{5}$,-$\frac{4}{5}$)D.(1,1)

分析 求出向量的模,然后求解单位向量.

解答 解:$\overrightarrow{a}$=(3,4),可得|$\overrightarrow{a}$|=5,
与$\overrightarrow{a}$共线的单位向量是:($\frac{3}{5}$,$\frac{4}{5}$)或(-$\frac{3}{5}$,-$\frac{4}{5}$).
故选:C.

点评 本题考查向量共线以及单位向量的求法,考查计算能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

12.已知命题p的否命题是“若A?B,则∁UA∩∁UB=∁UB”,写出命题p的逆否命题是若∁UA∩∁UB=∁UB,则A?B.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.如图,已知圆C的圆心在y轴的正半轴上,且与x轴相切,圆C与直线y=kx+3相交于A,B两点.当$k=\sqrt{3}$时,$|AB|=\sqrt{15}$.
(Ⅰ)求圆C的方程;
(Ⅱ)当k取任意实数时,问:在y轴上是否存在定点T,使得∠ATB始终被y轴平分?若存在,求出点T的坐标,若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知集合A={x|x2-2x-8≤0,x∈R},B={x|x2-(5+m)x+5m≤0,m∈R}.
(1)若A∩B=[2,4],求实数m的值;
(2)设全集为R,若B⊆∁RA,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.如图,三棱柱ABC-A1B1C1中,侧棱AA1⊥平面ABC,△ABC为等腰直角三角形,∠BAC=90°,且AB=AA1=2,E,F分别是CC1,BC的中点.
(1)求证:EF⊥平面AB1F;
(2)求三棱锥B1-AEF的体积;
(3)若点M是AB上一点,求|FM|+|MB1|的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.某滨海高档住宅小区给每一户业主均提供两套供水方案,一是供应市政自来水,每吨自来水的水费是2元;方案二是限最供应10吨海底岩层中的温泉水,苦温泉水用水量不超过5吨.则按基本价每吨8元收取.超过5吨不超过8吨的部分按基本价的1.5倍收取,超过8吨不超过10吨的部分按基本价的2倍收取.
(1)试写出温泉水用水费y(元)与其用水量x(吨)之间的函数关系式;
(2)若业主小王缴纳10月份的物业费时发现一共用水16吨,被收取的费用为72元,那么他当月的自来水与温泉水用水量各为多少吨?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.我国是水资源相对匿乏的国家,为鼓励节约用水,某市打算出台一项水费政策措施.规定每季度每人用水量不超过5吨时,每吨水费收基本价1.3元.若超过5吨而不超过6吨时,超过部分每吨水费收3.9元,若超过6吨而不超过7吨时,超过部分每吨水费收6.5元.
(1)如果某人本季度实际用水量为x(x≤7)吨,设本季度他应交水费为y元,试求出y与x的函数解析式;
(2)画出(1)中求出的函数图象;
(3)如果小王本季度应交水费11.7元,那么这一季度他实际用水量是多少吨?

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.若$\frac{π}{4}<a<\frac{π}{2}$,则sina,cosa,tana的大小关系为cosα<sinα<tanα.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.f(x)=sin(2ωx+φ),(0<ω<2π)以2为最小正周期,且在x=2时取最大值,则φ=2kπ-$\frac{3π}{2}$,k∈Z.

查看答案和解析>>

同步练习册答案