精英家教网 > 高中数学 > 题目详情

【题目】已知函数.

)当时,求曲线在点处的切线方程;

)若,讨论函数的单调性与单调区间;

)若有两个极值点,证明:.

【答案】;()详见解析;()证明见解析.

【解析】

)求出的值,利用点斜式可得出所求切线的方程;

)求得,由,分两种情况讨论,分析的符号变化,可得出函数的单调递增区间和递减区间;

)由题意可知,方程有两正根,利用韦达定理得出,将所证不等式转化为,构造函数,利用导数证明出当时,即可.

由题可知:函数的定义域为

)因为时,,所以

那么

所以曲线处的切线方程为:

)因为,由可得:

①当,时,有,满足

即函数上为减函数;

时,,即函数上为增函数;

②当时,恒成立,所以函数为减函数.

综上可知:

时,函数上为减函数,

上为增函数;

时,函数上为减函数;

)因为有两个极值点

有两个正根,则有,且,即

所以

若要,即要

构造函数,则,易知上为增函数,

所以存在使

且当,函数单调递减;

时,,函数单调递增.

所以函数上有最小值为

又因为,所以上恒成立,

成立.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】为了迎接2019年全国文明城市评比,某市文明办对市民进行了一次文明创建知识的网络问卷调查.每一位市民有且仅有一次参加机会,通过随机抽样,得到参加问卷调查的1000人的得分(满分:100分)数据,统计结果如下表所示:

组别

频数

25

150

200

250

225

100

50

(1)由频数分布表可以认为,此次问卷调查的得分服从正态分布近似为这1000人得分的平均值(同一组数据用该组区间的中点值作为代表),请利用正态分布的知识求

(2)在(1)的条件下,文明办为此次参加问卷调查的市民制定如下奖励方案:

(i)得分不低于的可以获赠2次随机话费,得分低于的可以获赠1次随机话费;

(ii)每次获赠的随机话费和对应的概率为:

获赠的随机话费(单位:元)

20

40

概率

现市民小王要参加此次问卷调查,记(单位:元)为该市民参加问卷调查获赠的话费,求的分布列及数学期望.

附:①

②若,则.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在三棱柱ABCA1B1C1中,MM1分别为ABA1B1中点.

1)求证:C1M1∥面A1MC

2)若面ABC⊥面ABB1A1,△AB1B为正三角形,AB2BC1,求四棱锥B1AA1C1C的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】大自然是非常奇妙的,比如蜜蜂建造的蜂房.蜂房的结构如图所示,开口为正六边形ABCDEF,侧棱AA'BB'CC'DD'EE'FF'相互平行且与平面ABCDEF垂直,蜂房底部由三个全等的菱形构成.瑞士数学家克尼格利用微积分的方法证明了蜂房的这种结构是在相同容积下所用材料最省的,因此,有人说蜜蜂比人类更明白如何用数学方法设计自己的家园.英国数学家麦克劳林通过计算得到∠BCD′=109°2816'.已知一个房中BB'5AB2tan54°4408',则此蜂房的表面积是_____.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】近五年来某草场羊只数量与草场植被指数两变量间的关系如表所示,绘制相应的散点图,如图所示:

年份

1

2

3

4

5

羊只数量(万只)

1.4

0.9

0.75

0.6

0.3

草地植被指数

1.1

4.3

15.6

31.3

49.7

根据表及图得到以下判断:①羊只数量与草场植被指数成减函数关系;②若利用这五组数据得到的两变量间的相关系数为,去掉第一年数据后得到的相关系数为,则;③可以利用回归直线方程,准确地得到当羊只数量为2万只时的草场植被指数;以上判断中正确的个数是(

A.0B.1C.2D.3

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数fx,若存在x1x2Rx1x2,使得fx1)=fx2)成立,则实数a的取值范围是(

A.[3+∞)B.3+∞)C.(﹣∞,3D.(﹣∞,3]

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数fx)=x2+acosx

1)求函数fx)的奇偶性.并证明当|a|2时函数fx)只有一个极值点;

2)当aπ时,求fx)的最小值;

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】4个相同的小球全部放入2个不同的盒子里,每个盒子至少放1个球,不同的放法数记为;把4个不同的小球全部放入2个不同的盒子里,每个盒子至少放1个球,不同的放法数记为.现在从的所有整数中(包括两个整数)抽取3个数,则这3个数之和共有( )种结果.

A.26B.27C.28D.29

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,已知抛物线C,过抛物线焦点F的直线交抛物线CAB两点,P是抛物线外一点,连接分别交抛物线于点CD,且,设的中点分别为MN.

1)求证:轴;

2)若,求面积的最小值.

查看答案和解析>>

同步练习册答案