精英家教网 > 高中数学 > 题目详情
13.若a,b,c为△ABC的内角A,B,C的对边,它的面积为$\frac{{a}^{2}+{b}^{2}-{c}^{2}}{4\sqrt{3}}$,则角C等于(  )
A.30°B.45°C.60°D.90°

分析 由三角形面积计算公式及其余弦定理可得$\frac{1}{2}absinC$=$\frac{{a}^{2}+{b}^{2}-{c}^{2}}{4\sqrt{3}}$=$\frac{2abcosC}{4\sqrt{3}}$,解出即可.

解答 解:$\frac{1}{2}absinC$=$\frac{{a}^{2}+{b}^{2}-{c}^{2}}{4\sqrt{3}}$=$\frac{2abcosC}{4\sqrt{3}}$,
化为tanC=$\frac{\sqrt{3}}{3}$,
C∈(0°,180°),
∴C=30°,
故选:A.

点评 本题考查了三角形面积计算公式及其余弦定理,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

3.已知各项均不相等的等差数列{an}的前四项和S4=14,且a1,a3,a7成等比.
(1)求数列{an}的通项公式;
(2)设Tn为数列{$\frac{1}{{a}_{n}{a}_{n+1}}$}的前n项和,若Tn≤λan+1对一切n∈N*恒成立,求实数λ的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.已知f(x)=ln(3x-1),则f′(1)=$\frac{3}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.设P和Q是两个集合,定义集合P-Q={x|x∈P,且x∉Q},如果P={x|0<x<2},Q={x|1<x<3},那么P-Q={x|0<x≤1}.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.对于每个自然数n,抛物线y=(n2+n)x2-(2n+1)x+1与x轴交于An,Bn两点,以|AnBn|表示该两点间的距离,则|A1B1|+|A2B2|+…+|A2015B2015|的值是$\frac{2015}{2016}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.曲线y=ax2-ax+1(a≠0)在点(0,1)处的切线与直线3x+y+1=0垂直,则a=(  )
A.$\frac{1}{2}$B.-$\frac{1}{2}$C.$\frac{1}{3}$D.-$\frac{1}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知数列{an}的前n项和为Sn,且各项都是正数,2Sn=an+12-an+1(n∈N*),a1=1,
(1)求a2,a3
(2)求数列{an}的通项公式;
(3)求数列$\left\{{\frac{1}{S_n}}\right\}$的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.(1)写出数列{an}的前五项,其中a1=-$\frac{1}{4}$,an=1-$\frac{1}{{a}_{n-1}}$.
(2)在等比数列{an}中,已知a1=-1,a4=64,求q,S4
(3)已知数列{an}的前n项和为Sn=n2+2n+3,求这个数列的通项公式an

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.设等差数列{an}的前n项和为Sn,且a2+a16=34,S4=16.数列{bn}的前n项和为Tn,满足Tn+bn=1.
(1)求数列{an}的通项公式;
(2)写出一个正整数m,使得$\frac{1}{{{a_m}+9}}$是数列{bn}的项;
(3)设数列{cn}的通项公式为cn=$\frac{a_n}{{{a_n}+t}}$,问:是否存在正整数t和k(k≥3),使得c1,c2,ck成等差数列?若存在,请求出所有符合条件的有序整数对(t,k);若不存在,请说明理由.

查看答案和解析>>

同步练习册答案