精英家教网 > 高中数学 > 题目详情

【题目】已知动圆 经过点 ,并且与圆 相切.
(1)求点P的轨迹C的方程;
(2)设 为轨迹C内的一个动点,过点 且斜率为 的直线 交轨迹C于A,B两点,当k为何值时? 是与m无关的定值,并求出该值定值.

【答案】
(1)解:由题设得: ,所以点P的轨迹C是以M、N为焦点的椭圆,
(2)解:设A(x1 , y1),B(x2 , y2),G(m,0)(-2<m<2),直线l:y=k(x-m)由 得,
的值与 无关,
,解得
.
【解析】(1)主要考查椭圆的性质及其轨迹方程。
(2)先假设出直线方程,再将直线方程与已求出的椭圆方程联立求解,得出关于m的方程式,最后将求出的方程与已知条件结合解出该定值。

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】若关于x的方程22x+2xa+a+1=0有实根,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知f(x)是定义在R上的奇函数,满足f(﹣ +x)=f( +x),当x∈[0, ]时,f(x)=ln(x2﹣x+1),则函数f(x)在区间[0,6]上的零点个数是(
A.3
B.5
C.7
D.9

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知离心率为 的椭圆C: + =1(a>b>0)过点P(﹣1, ).
(1)求椭圆C的方程;
(2)直线AB:y=k(x+1)交椭圆C于A、B两点,交直线l:x=m于点M,设直线PA、PB、PM的斜率依次为k1、k2、k3 , 问是否存在实数t,使得k1+k2=tk3?若存在,求出实数t的值以及直线l的方程;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】定义一个集合A的所有子集组成的集合叫做集合A的幂集,记为P(A),用n(A)表示有限集A的元素个数,给出下列命题:①对于任意集合A,都有AP(A);②存在集合A,使得n[P(A)]=3;③用表示空集,若A∩B=,则P(A)∩P(B)=;④若A B,,则P(A) P(B);⑤若n(A)-n(B)=1,则n[P(A)]=2×n[P(B)]其中正确的命题个数为( )。
A.4
B.3
C.2
D.1

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在四棱柱 中,底面 是正方形,且

(1)求证:
(2)若动点 在棱 上,试确定点 的位置,使得直线 与平面 所成角的正弦值为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】数列{an}是以a为首项,q为公比的等比数列,数列{bn}满足bn=1+a1+a2+…+an(n=1,2,…),数列{cn}满足cn=2+b1+b2+…+bn(n=1,2,…).若{cn}为等比数列,则a+q=(
A.
B.3
C.
D.6

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】近年来郑州空气污染较为严重,现随机抽取一年(365天)内100天的空气中 指数的监测数据,统计结果如下:

空气质量

轻微污染

轻度污染

中度污染

中度重污染

重度污染

天数

4

13

18

30

9

11

15

记某企业每天由空气污染造成的经济损失为 (单位:元), 指数为 .当 在区间 内时对企业没有造成经济损失;当 在区间 内时对企业造成经济损失成直线模型(当 指数为150时造成的经济损失为500元,当 指数为200 时,造成的经济损失为700元);当 指数大于300时造成的经济损失为2000元.

非重度污染

重度污染

合计

供暖季

非供暖季

合计

100


(1)试写出 的表达式;
(2)试估计在本年内随机抽取一天,该天经济损失 大于500元且不超过900元的概率;
(3)若本次抽取的样本数据有30天是在供暖季,其中有8天为重度污染,完成下面列联表,并判断是否有 的把握认为郑州市本年度空气重度污染与供暖有关?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设 是定义在 上的函数,则“函数 为偶函数”是“函数 为奇函数”的( )
A.充分不必要条件
B.必要不充分条件
C.充分必要条件
D.既不充分也不必要条件

查看答案和解析>>

同步练习册答案