精英家教网 > 高中数学 > 题目详情
条件p:m=-2是条件q:函数f(x)=x2+mx+1的图象关于直线x=1对称的(  )
分析:可根据充分、必要条件的概念予以判断:p:m=-2⇒q:函数f(x)=x2+mx+1的图象关于直线x=1对称,反之亦然.
解答:解:当m=-2时,f(x)=x2-2x+1=(x-1)2的图象关于直线x=1对称,反之亦然;
故选C.
点评:本题考查二次函数的性质,难点在于充分条件与充要条件的判断,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网如图,已知直线l1:y=2x+m(m<0)与抛物线C1:y=ax2(a>0)和圆C2:x2+(y+1)2=5都相切,F是C1的焦点.
(1)求m与a的值;
(2)设A是C1上的一动点,以A为切点作抛物线C1的切线l,直线l交y轴于点B,以FA,FB为邻边作平行四边形FAMB,证明:点M在一条定直线上;
(3)在(2)的条件下,记点M所在的定直线为l2,直线l2与y轴交点为N,连接MF交抛物线C1于P,Q两点,求△NPQ的面积S的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网如图,已知直线
l
 
1
:y=2x+m(m<0)
与抛物线C1:y=ax2(a>0)和圆C2x2+(y+1)2=5都相切,F是C1的焦点.
(1)求m与a的值;
(2)设A是C1上的一动点,以A为切点作抛物线C1的切线,直线交y轴于点B,以FA,FB为邻边作平行四边形FAMB,证明:点M在一条定直线上;
(3)在(2)的条件下,记点M所在的定直线为l2,直线l2与y轴交点为N,连接MF交抛物线C1于P,Q两点,求△NPQ的面积S的取值范围.

查看答案和解析>>

科目:高中数学 来源:2011-2012学年浙江省台州市高三第一学期第二次统练试题文科数学 题型:解答题

(本题满分15分)如图,已知直线与抛物线和圆都相切,FC1的焦点.

(1)求ma的值;

(2)设AC1上的一动点,以A为切点作抛物线C1的切线l,直线ly轴于点B,以FA、FB为邻边作平行四边形FAMB,证明:点M在一条定直线上;

(3)在(2)的条件下,记点M点所在的定直线为l2,直线l2y轴交点为N,连接MF交抛物线C1P、Q两点,求△NPQ的面积S的取值范围.

 

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,已知直线数学公式与抛物线数学公式和圆数学公式都相切,F是C1的焦点.
(1)求m与a的值;
(2)设A是C1上的一动点,以A为切点作抛物线C1的切线,直线交y轴于点B,以FA,FB为邻边作平行四边形FAMB,证明:点M在一条定直线上;
(3)在(2)的条件下,记点M所在的定直线为l2,直线l2与y轴交点为N,连接MF交抛物线C1于P,Q两点,求△NPQ的面积S的取值范围.

查看答案和解析>>

科目:高中数学 来源:0111 模拟题 题型:解答题

如图,已知直线l1:y=2x+m(m<0)与抛物线C1:y=ax2(a>0)和圆C2:x2+(y+1)2=5都相切,F是C1的焦点。

(1)求m与a的值;
(2)设A是C1上的一动点,以A为切点作抛物线C1的切线l,直线l交y轴于点B,以FA,FB为邻边作平行四边形FAMB,证明:点M在一条定直线上;
(3)在(2)的条件下,记点M所在的定直线为l2,直线l2与y轴交点为N,连接MF交抛物线C1于P,Q两点,求△NPQ的面积S的取值范围。

查看答案和解析>>

同步练习册答案