精英家教网 > 高中数学 > 题目详情

【题目】对于若数列满足则称这个数列为“数列”.

(Ⅰ)已知数列1, 是“数列”,求实数的取值范围;

(Ⅱ)是否存在首项为的等差数列为“数列”,且其前项和使得恒成立?若存在,求出的通项公式;若不存在,请说明理由;

(Ⅲ)已知各项均为正整数的等比数列是“数列”,数列不是“数列”,若试判断数列是否为“数列”,并说明理由.

【答案】见解析;见解析.

【解析】试题分析:1)根据题目中所定义的“数列”,只需同时满足,解不等式可解m范围。(2)由题意可知,若存在只需等差数列的公差,即< ,代入n=1,n>1,矛盾。(3)设数列的公比为 ,满足“数列”,即只需最小项不是“数列”,为最小项,

所以,所以只能只有解分两类讨论数列

试题解析:()由题意得

解得

所以实数的取值范围是

假设存在等差数列符合要求,设公差为

由题意,均成立,

,

,

因为

所以矛盾,

所以这样的等差数列不存在.

)设数列的公比为

因为的每一项均为正整数,

所以在,“”为最小项.

同理, ,“”为最小项.

为“数列”,只需

又因为不是“数列”,为最小项,

所以,

由数列的每一项均为正整数,可得

所以

,

所以为递增数列,

所以

所以对于任意的都有

即数列为“数列”.

,

因为

所以数列不是“数列”.

综上:,数列为“数列”,

, 数列不是“数列”.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知椭圆的中心在原点,对称轴为坐标轴,椭圆与直线相切于点

(1)求椭圆的标准方程;

(2)若直线 与椭圆相交于两点( 不是长轴端点),且以为直径的圆过椭圆轴正半轴上的顶点,求证:直线过定点,并求出该定点的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某公司欲生产一款迎春工艺品回馈消费者,工艺品的平面设计如图所示,该工艺品由直角和以为直径的半圆拼接而成,点为半圈上一点(异于),点在线段上,且满足.已知,设.

1)为了使工艺礼品达到最佳观赏效果,需满足,且达到最大.为何值时,工艺礼品达到最佳观赏效果;

2)为了工艺礼品达到最佳稳定性便于收藏,需满足,且达到最大.为何值时,取得最大值,并求该最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知双曲线CO为坐标原点,FC的右焦点,过F的直线与C的两条渐近线的交点分别为M、N.OMN为直角三角形,则|MN|=

A. B. 3 C. D. 4

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知抛物线C,点x轴的正半轴上,过点M的直线l与抛线C相交于AB两点,O为坐标原点.

,且直线l的斜率为1,求证:以AB为直径的圆与抛物线C的准线相切;

是否存在定点M,使得不论直线l绕点M如何转动,恒为定值?若存在,请求出点M的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的左、右焦点分别为,离心率,过且与轴垂直的直线与椭圆在第一象限内的交点为,且.

(1)求椭圆的方程;

(2)过点的直线交椭圆两点,当时,求直线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】2018河南豫南九校高三下学期第一次联考设函数

I)当时, 恒成立,求的范围;

II)若处的切线为,且方程恰有两解,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知不等式的解集为.

1)求;(2)解关于的不等式

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知复数满足的虚部为,且在复平面内对应的点在第二象限.

(1)求复数

(2)若复数满足,求在复平面内对应的点的集合构成图形的面积.

查看答案和解析>>

同步练习册答案