精英家教网 > 高中数学 > 题目详情
甲厂以x千克/小时的速度匀速生产某种(生产条件要求1≤x≤10),每一小时可获得的利润是100(5x+1-
3
2
)元
(Ⅰ)要使生产该产品2小时获得的利润为3000元,求x的值;
(Ⅱ)要使生产900千克该产品获得的利润最大,问:甲厂应该选取何种生产速度?并求此最大利润.
考点:函数模型的选择与应用
专题:应用题,函数的性质及应用
分析:(Ⅰ)要使生产该产品2小时获得的利润为3000元,可得200(5x+1-
3
x
)=3000,即可求x的值;
(Ⅱ)可得生产1千克所获得的利润为90000(5+
1
x
-
3
x2
),1≤x≤10.进而得到生产900千克该产品获得的利润,利用二次函数的单调性即可得出.
解答: 解:(Ⅰ)由题意,200(5x+1-
3
x
)=3000,即5x2-14x-3=0,
∵1≤x≤10,∴x=3;
(Ⅱ)生产900千克该产品获得的利润为90000(5+
1
x
-
3
x2
),1≤x≤10.
设f(x)=5+
1
x
-
3
x2
,1≤x≤10.
则f(x)=-3(
1
x
-
1
6
)2+
1
12
+5,当且仅当x=6取得最大值.
故获得最大利润为90000×
61
12
=457500元.
因此甲厂应以6千克/小时的速度生产,可获得最大利润457500元.
点评:正确理解题意和熟练掌握二次函数的单调性是解题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=lnx+ax2-3x
(Ⅰ)若f′(2)=
3
2
,求函数f(x)的单调区间;
(Ⅱ)当a>0时,设函数f(x)的2个极值点为x1,x2,若f(x1)+f(x2)=-
9
4a
,求a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,内角A,B,C所对的边分别为a,b,c,且BC边上的高为
3
6
a,则
c
b
+
b
c
取得最大值时,内角A的值为(  )
A、
π
2
B、
π
6
C、
3
D、
π
3

查看答案和解析>>

科目:高中数学 来源: 题型:

下列结论正确的是(  )
A、若p∨q为真命题,则p∧q为真命题
B、一个命题的逆命题为真,它的否命题也一定为真
C、命题“?x∈R,x2-x≤0”的否定是“?x∈R,x2-x≥0”
D、命题“若x<-1,则x2-2x-3>0”的否命题“若x<-1,则x2-2x-3≤0”

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}的通项公式an=
20
(n+1)2
-1,Sn是数列an的前n项和,S98最接近的整数是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

记[x]表示不超过x的最大整数,例如[1.3]=1,[-2.7]=-3.函数f(x)=
ax
1+ax
-
1
2
(a>0且a≠1),在x>0时恒有[f(x)]=0,则实数a的取值范围是(  )
A、a>1
B、0<a<1
C、a>
1
2
D、0<a<
1
2

查看答案和解析>>

科目:高中数学 来源: 题型:

设m是一个非负整数,m的个位数记作G(m),如G(2014)=4,G(17)=7,G(0)=0,称这样的函数为尾数函数.下列给出有关尾数函数的结论:
①G(a-b)=G(a)-G(b);
②?a,b,c∈N,若a-b=10c,都有G(a)=G(b);
③G(a•b•c)=G(G(a)•G(b)•G(c));
④G(32015)=9.
则正确的结论的个数为(  )
A、1B、2C、3D、4

查看答案和解析>>

科目:高中数学 来源: 题型:

化简:cos(
π
4
+α)+sin(
π
4
).

查看答案和解析>>

科目:高中数学 来源: 题型:

(1)当x<
3
2
时,求函数y=x+
8
2x-3
的最大值;
(2)当0<x<
1
2
时,求函数y=
1
2
x(1-2x)的最大值.

查看答案和解析>>

同步练习册答案