分析 (I)a1=2,an+1=2(Sn+n+1)(n∈N*),可得a2=8.利用递推关系可得:an+1=3an+2,变形为:an+1+1=3(an+1),即bn+1=3bn,即可证明.
(II)由(I)可得:bn=3n.利用“错位相减法”与等比数列的求和公式即可得出.
(III)bn=3n=an+1,解得an=3n-1.由$\frac{1}{{a}_{k}}$=$\frac{1}{{3}^{k}-1}>$$\frac{1}{{3}^{k}}$,即可证明左边不等式成立.又由$\frac{1}{{a}_{k}}$=$\frac{1}{{3}^{k}-1}$=$\frac{{3}^{k+1}-1}{({3}^{k}-1)({3}^{k+1}-1)}$<$\frac{{3}^{k+1}}{({3}^{k}-1)({3}^{k+1}-1)}$=$\frac{3}{2}(\frac{1}{{3}^{k}-1}-\frac{1}{{3}^{k+1}-1})$,即可证明右边不等式成立.
解答 (I)证明:a1=2,an+1=2(Sn+n+1)(n∈N*),∴a2=2×(2+1+1)=8.
n≥2时,an=2(Sn-1+n),相减可得:an+1=3an+2,变形为:an+1+1=3(an+1),n=1时也成立.
令bn=an+1,则bn+1=3bn.∴{bn}是等比数列,首项为3,公比为3.
(II)解:由(I)可得:bn=3n.
∴数列{nbn}的前n项和Tn=3+2×32+3×33+…+n•3n,
3Tn=32+2×33+…+(n-1)•3n+n•3n+1,
∴-2Tn=3+32+…+3n-n•3n+1=$\frac{3({3}^{n}-1)}{3-1}$-n•3n+1=$\frac{1-2n}{2}$×3n+1-$\frac{3}{2}$,
解得Tn=$\frac{2n-1}{4}×{3}^{n+1}$+$\frac{3}{4}$.
(III)证明:∵bn=3n=an+1,解得an=3n-1.
由$\frac{1}{{a}_{k}}$=$\frac{1}{{3}^{k}-1}>$$\frac{1}{{3}^{k}}$.
∴$\frac{1}{{a}_{1}}+\frac{1}{{a}_{2}}$+…+$\frac{1}{{a}_{n}}$>$\frac{1}{3}+\frac{1}{{3}^{2}}+$…+$\frac{1}{{3}^{n}}$=$\frac{\frac{1}{3}(1-\frac{1}{{3}^{n}})}{1-\frac{1}{3}}$=$\frac{1}{2}-\frac{1}{2}×\frac{1}{{3}^{n}}$,因此左边不等式成立.
又由$\frac{1}{{a}_{k}}$=$\frac{1}{{3}^{k}-1}$=$\frac{{3}^{k+1}-1}{({3}^{k}-1)({3}^{k+1}-1)}$<$\frac{{3}^{k+1}}{({3}^{k}-1)({3}^{k+1}-1)}$=$\frac{3}{2}(\frac{1}{{3}^{k}-1}-\frac{1}{{3}^{k+1}-1})$,
可得$\frac{1}{{a}_{1}}+\frac{1}{{a}_{2}}$+…+$\frac{1}{{a}_{n}}$<$\frac{1}{2}$+$\frac{3}{2}[(\frac{1}{{3}^{2}-1}-\frac{1}{{3}^{3}-1})$+$(\frac{1}{{3}^{3}-1}-\frac{1}{{3}^{4}-1})$…+$(\frac{1}{{3}^{n}-1}-\frac{1}{{3}^{n+1}-1})]$
=$\frac{1}{2}+\frac{3}{2}(\frac{1}{8}-\frac{1}{{3}^{n+1}-1})$<$\frac{11}{16}$.因此右边不等式成立.
综上可得:$\frac{1}{2}$-$\frac{1}{2×{3}^{n}}$<$\frac{1}{{a}_{1}}$$+\frac{1}{{a}_{2}}$$+\frac{1}{{a}_{3}}$+…+$\frac{1}{{a}_{n}}$$<\frac{11}{16}$.
点评 本题考查了等比数列的通项公式与求和公式、数列递推关系、“错位相减法”、“放缩法”、不等式的性质,考查了推理能力与计算能力,属于难题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | {x|-2≤x≤1} | B. | {x|1≤x<2} | C. | {x|-1≤x≤2} | D. | {x|-3≤x≤2} |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | $\frac{2}{3}$ | B. | $\frac{3}{2}$ | C. | $\frac{3}{4}$ | D. | $\frac{4}{3}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com