精英家教网 > 高中数学 > 题目详情

【题目】已知,函数有两个不同的零点

I)证明:

(Ⅱ)证明:

【答案】I)证明见解析(Ⅱ)证明见解析

【解析】

I)分离参数,构造函数,利用导数讨论的单调性以及最值,根据直线有两个交点,即可求得参数的范围;

(Ⅱ)先证明,再证明成立即可.

证明:(I)由,则

时,,此时单调递增;

时,,此时单调递减.

因为有两个不同的零点,故,即.

,则当时,,此时上无零点,

上至多一个零点,与题设矛盾,故.

(Ⅱ)(1)一方面,先证明成立:

,由(I)可知

构造函数

所以

所以当时,递增,

所以,即

因为,所以

又因为,且在区间上单调递减,

所以,即

2)另一方面,要证明成立,

只需证明成立,

故只需证明,即成立

等价于

因为,所以只需证明

成立.

设函数,则

单调递减,

于是,故成立

综上所述:

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数.

1)当时,求上的最小值;

2)若的两个不同的极值点,且,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】炼钢是一个氧化降碳的过程,由于钢水含碳量的多少直接影响冶炼时间的长短,因此必须掌握钢水含碳量和冶炼时间的关系.现已测得炉料熔化完毕时钢水的含碳量与冶炼时间(从炉料熔化完毕到出钢的时间)的一组数据,如下表所示:

1

2

3

4

5

6

7

8

9

10

104

180

190

177

147

134

150

191

204

121

100

200

210

185

155

135

170

205

235

125

10400

36000

39900

32745

22785

18090

25500

39155

47940

15125

(1)据统计表明,之间具有线性相关关系,请用相关系数加以说明( ,则认为有较强的线性相关关系,否则认为没有较强的线性相关关系,精确到0.001);

(2)建立关于的回归方程(回归系数的结果精确到0.01);

(3)根据(2)中的结论,预测钢水含碳量为160个0.01%的冶炼时间.

参考公式:回归方程中斜率和截距的最小二乘估计分别为

,相关系数

参考数据:

.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

1)讨论函数的极值;

2)是否存在实数,使得不等式上恒成立?若存在,求出的最小值:若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

1)若时,直线与函数图象有三个相异的交点,求实数的取值范围;

2)讨论的单调性.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为了打好脱贫攻坚战,某贫困县农科院针对玉米种植情况进行调研,力争有效地改良玉米品种,为农民提供技术支援,现对已选出的一组玉米的茎高进行统计,获得茎叶图如图(单位:厘米),设茎高大于或等于180厘米的玉米为高茎玉米,否则为矮茎玉米.

1)求出易倒伏玉米茎高的中位数

2)根据茎叶图的数据,完成下面的列联表:

抗倒伏

易倒伏

矮茎

高茎

3)根据(2)中的列联表,是否可以在犯错误的概率不超过1%的前提下,认为抗倒伏与玉米矮茎有关?

附:

0.050

0.010

0.001

3.841

6.635

10.828

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设点分别是椭圆的左、右焦点,为椭圆上任意一点,且的最小值为0.

(1)求椭圆的方程;

(2)如图,动直线与椭圆有且仅有一个公共点,点是直线上的两点,且,求四边形面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某保险公司为客户定制了5个险种:甲,一年期短险;乙,两全保险;丙,理财类保险;丁,定期寿险:戊,重大疾病保险,各种保险按相关约定进行参保与理赔.该保险公司对5个险种参保客户进行抽样调查,得出如下的统计图例,以下四个选项错误的是(

A.54周岁以上参保人数最少B.1829周岁人群参保总费用最少

C.丁险种更受参保人青睐D.30周岁以上的人群约占参保人群的80%

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,四棱锥的底面是直角梯形,

1)证明:平面

2)求点到平面的距离;

查看答案和解析>>

同步练习册答案