精英家教网 > 高中数学 > 题目详情
给出如下四个命题:
①若“p且q”为假命题,则p,q均为假命题;
②命题“若a>b,则a3>b3”的否命题为“若a≤b,则a3≤b3”;
③“?x∈R,x2+1≥1”的否定是“?x∈R,x2+1≤1”;
④在△ABC中,“A>B”是“sinA>sinB”的充要条件.
其中正确的命题序号是(  )
A、①②B、②④C、②③D、①④
考点:命题的真假判断与应用
专题:简易逻辑
分析:①根据复合命题与简单命题之间的关系进行判断.②根据否命题的定义进行判断.③根据含有量词的命题的否定进行判断.④根据正弦定理及充要条件的定义进行判断.
解答: 解:①若“p且q”为假命题,则p、q至少有一个为假命题,∴①错误.
②根据命题的否命题可知,命题“若a>b,则2a>2b-1”的否命题为“若a≤b,则2a≤2b-1”,∴②正确.
③全称命题的否定是特称命题,得③“?x∈R,x2+1≥1”的否定是“?x∈R,x2+1<1”.∴③错误.
④在△ABC中,sinA>sinB?sinA•2R>sinB•2R?a>b?A>B,∴④正确;
故②④正确;
故选:B.
点评:本题主要考查四种命题之间的关系,复合命题与简单命题之间的关系以及含有量词的命题的否定,充要条件的定义,比较基础.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

过已知圆x2+y2-x+2y+
1
4
=0的圆心,且与直线x+y+1=0垂直的直线的一般方程为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

下列“若p,则q”形式的命题中:
①若x∈E或x∈F,则x∈E∪F;
②若关于x的不等式ax2-2ax+a+3>0的解集为R,则a>0;
③若
2
x是有理数,
则x是无理数p是q的充分而不必要条件的有
 
个.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,D是△ABC的边AB的三等分点,则向量
CD
等于(  )
A、
CA
+
2
3
AB
B、
CA
+
1
3
AB
C、
CB
+
2
3
AB
D、
CB
+
1
3
AB

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)=sin(x+
π
2
),g(x)=cos(x-
π
2
),则下列结论正确的是(  )
A、函数y=f(x)•g(x)的最大值为1
B、函数y=f(x)•g(x)的对称中心是(
2
+
π
4
,0),k∈z
C、将f(x)的图象向右平移
π
2
单位后得g(x)的图象
D、当x∈[-
π
2
π
2
]时,函数y=f(x)•g(x)单调递增

查看答案和解析>>

科目:高中数学 来源: 题型:

已知直线AB外的任一点O,下列条件中能确定点C与点A、B一定共线的是(  )
A、
OC
=
OA
+
OB
B、
OC
=
OA
-
OB
C、
OC
=
1
3
OA
+
1
3
OB
D、
OC
=
4
3
OA
-
1
3
OB

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,A为最小角,C为最大角,已知cos(2A+C)=-
4
5
,sinB=
4
5
,则cos2(B+C)=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知在xoy平面内有一区域M,命题甲:点(a,b)∈{(x,y||x-1|+|y-2|<2)};命题乙:点(a,b)∈M,如果甲是乙的必要条件,那么区域M的面积有(  )
A、最小值8B、最大值8
C、最小值4D、最大值4

查看答案和解析>>

科目:高中数学 来源: 题型:

复数
1
5
(-2-i)+
1
1-2i
的虚部是(  )
A、
1
5
i
B、
1
5
C、-
1
5
i
D、-
1
5

查看答案和解析>>

同步练习册答案