分析 利用线性规划的内容作出不等式组对应的平面区域,利用线性规划的内容进行图象平移,然后确定目标函数是最值.
解答 解:依题意,A蔬菜购买的公斤数x和B蔬菜购买的公斤数y之间的满足的不等式组如下:$\left\{\begin{array}{l}2x+3y≤60\\ x≥6\\ y≥4\end{array}\right.$…(3分)
画出的平面区域如图.…(6分)
设餐馆加工这两种蔬菜利润为z元,则目标函数为z=2x+y…(7分)
∵y=-2x+z∴z表示过可行域内点斜率为-2的一组平行线在y轴上的截距.
联立$\left\{\begin{array}{l}2x+3y=60\\ y=4\end{array}\right.$解得$\left\{\begin{array}{l}x=24\\ y=4\end{array}\right.$即B(24,4)…(9分)
∴当直线过点B(24,4)时,在y轴上的截距最大,
即zmax=2×24+4=52…(11分)
答:餐馆应购买A蔬菜24公斤,B蔬菜4公斤,加工后利润最大为52元.…(12分),
故答案为:52
点评 本题主要考查二元一次不等式组表示平面区域的知识,以及线性规划的基本应用,利用数形结合是解决此类问题的关键.
科目:高中数学 来源: 题型:选择题
A. | x=1 | B. | y=$\frac{1}{2}$ | C. | x+y=1 | D. | x-y=1 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | 15m | B. | 5$\sqrt{6}$m | C. | 10$\sqrt{6}$m | D. | 15$\sqrt{6}$m |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | b>a>c | B. | a>b>c | C. | c>a>b | D. | b>c>a |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com