精英家教网 > 高中数学 > 题目详情
已知f(x+2)的定义域为[1,2],求f(x)的定义域.
考点:函数的定义域及其求法
专题:函数的性质及应用
分析:由条件求得x+2的范围,可得f(x)的定义域.
解答: 解:∵已知f(x+2)的定义域为[1,2],即 1≤x≤2,∴3≤x+2≤4,
故函数f(x)的定义域为[3,4].
点评:本题主要考查抽象函数的定义域,体现了“换元”的思想,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=lnx+x2
(1)若函数g(x)=f(x)-ax在定义域内为增函数,求实数a的取值范围;
(2)在(1)的条件下,且a>1,h(x)=e3x-3aex,x∈[0,ln2],求h(x)的极小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图所示,在矩形ABCD中,已知AB=a,BC=b(a>b),在AB、AD、CD、CB上分别截取AE、AH、CG、CF都等于x,当x取何值时,四边形EFGH的面积最大?并求出这个最大面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知向量
OP1
OP2
OP3
满足条件
OP1
+
OP2
+
OP3
=0,|
OP1
|=|
OP2
|=|
OP3
|=1,则△P1P2P3是(  )
A、等腰三角形
B、等边三角形
C、直角三角形
D、等腰直角三角形

查看答案和解析>>

科目:高中数学 来源: 题型:

我班制定了数学学习方案:星期一和星期日分别解决4个数学问题,且从星期二开始,每天所解决问题的个数与前一天相比,要么“多一个”要么“持平”要么“少一个”.在一周中每天所解决问题个数的不同方案共有(  )
A、50种B、51种
C、140种D、141种

查看答案和解析>>

科目:高中数学 来源: 题型:

已知向量
a
=( 
3
,1),向量
b
=(sin2x,cos2x),函数f(x)=
a
b

(1)求函数f(x)的表达式,并作出函数y=f(x)在一个周期内的简图(用五点法列表描点);
(2)求函数y=f(x)的周期,并写单调区间.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知等差数列{an}是递增数列,且满足a4•a7=15,a3+a8=8
(1)求数列{an}的通项公式;
(2)令bn=
an
3n-1
,求数列{bn}的前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:

已知p:(
x-4
3
2≤4,q:x2-2x+1-m2≤0(m>0).
(1)分别求出命题p、命题q所表示的不等式的解集A,B;
(2)若¬p是¬q的必要不充分条件,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

方程x
1
2
=logsin1x的实根个数是
 
个.

查看答案和解析>>

同步练习册答案