精英家教网 > 高中数学 > 题目详情
(2012•杭州二模)已知扇形的圆心角为2θ(0<θ<
π
4
)
,半径为r,分别按图1,图2作扇形的内接矩形,若按图1作出的矩形面积的最大值为
1
2
r2tanθ,则按图2作出的矩形面积的最大值 为
r2tan
θ
2
r2tan
θ
2
分析:将图二可拆分成两个图一的形式,可以类比得到结论.图一角是2α,图二拆分后角是α,故矩形面积的最大值为
1
2
r2tan
θ
2
,由此可得结论.
解答:解:图一,设∠MOQ=x,则MQ=rsinx
在△OMN中,
MN
sin(2α-x)
=
r
sin(180°-2α)
,∴MN=
rsin(2α-x)
sin2α

∴矩形面积S=
r2sin(2α-x) sinx
sin2α
=
r2
2sin2α
[cos(2x-2α)-cos2α]
r2
2sin2α
[1-cos2α]
=
1
2
r2tanα
当且仅当x=α时,取得最大值,故图一矩形面积的最大值为
1
2
r2tanθ,图二可拆分成两个,
图一角是2α,图二拆分后角是α,故根据图1得出的结论,可得矩形面积的最大值为
1
2
r2tan
θ
2

而图二时由两个这样的图形组成,所以两个则为r2tan
θ
2

故答案为:r2tan
θ
2
点评:本题考查扇形内接矩形面积问题,考查学生分析解决问题的能力,解题的关键是发现两个图之间的联系,利用已有的结论进行解题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2012•杭州二模)如图,在矩形ABCD中,AB=2BC,点M在边DC上,点F在边AB上,且DF⊥AM,垂足为E,若将△ADM沿AM折起,使点D位于D′位置,连接D′B,D′C得四棱锥D′-ABCM.
(Ⅰ)求证:AM⊥D′F;
(Ⅱ)若∠D′EF=
π
3
,直线D'F与平面ABCM所成角的大小为
π
3
,求直线AD′与平面ABCM所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•杭州二模)设定义域为(0,+∞)的单调函数f(x),对任意的x∈(0,+∞),都有f[f(x)-log2x]=6,若x0是方程f(x)-f′(x)=4的一个解,且x0∈(a,a+1)(a∈N*),则a=
1
1

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•杭州二模)双曲线
x2
a2
-
y2
b2
=1(a>0 b>0)
的左、右焦点分别为F1,F2,渐近线分别为l1,l2,点P在第一 象限内且在l1上,若l2⊥PF1,l2∥PF2,则双曲线的离心率是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•杭州二模)已知正三棱柱ABC-A′B′C′的正视图和侧视图如图所示.设△ABC,△A′B′C′的中心分别是O,O′,现将此三棱柱绕直线OO′旋转,在旋转过程中对应的俯视图的面积为S,则S的最大值为
8
8

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•杭州二模)若全集U={1,2,3,4,5},CUP={4,5},则集合P可以是(  )

查看答案和解析>>

同步练习册答案