【题目】已知a,b,c,d∈E,证明下列不等式:
(1)(a2+b2)(c2+d2)≥(ac+bd)2;
(2)a2+b2+c2≥ab+bc+ca.
【答案】
(1)证明:∵(a2+b2)(c2+d2)﹣(ac+bd)2=( a2c2+a2d2+b2c2+b2d2)﹣(a2c2+2abcd+b2d2)
=(ad﹣bc)2≥0,
∴(a2+b2)(c2+d2)≥(ac+bd)2 成立
(2)证明:a2+b2+c2
= (a2+b2+c2+a2+b2+c2)
≥ (2ab+2ca+2bc)=ab+bc+ca.
∴a2+b2+c2≥ab+bc+ca
【解析】(1)根据不等式的左边减去右边化简结果为 (ad﹣bc)2≥0,可得不等式成立(2)从不等式的左边入手,左边对应的代数式的二倍,分别写成两两相加的形式,在三组相加的式子中分别用均值不等式,整理成最简形式,得到右边的2倍,两边同时除以2,得到结果.
【考点精析】根据题目的已知条件,利用不等式的证明的相关知识可以得到问题的答案,需要掌握不等式证明的几种常用方法:常用方法有:比较法(作差,作商法)、综合法、分析法;其它方法有:换元法、反证法、放缩法、构造法,函数单调性法,数学归纳法等.
科目:高中数学 来源: 题型:
【题目】某市为了引导居民合理用水,居民生活用水实行二级阶梯式水价计量办法,具体如下:第一阶梯,每户居民月用水量不超过12吨,价格为4元/吨;第二阶梯,每户居民月用水量超过12吨,超过部分的价格为8元/吨.为了了解全市居民月用水量的分布情况,通过抽样获得了100户居民的月用水量(单位:吨),将数据按照, ,…, 分成8组,制成了如图1所示的频率分布直方图.
(图1) (图2)
(Ⅰ)求频率分布直方图中字母的值,并求该组的频率;
(Ⅱ)通过频率分布直方图,估计该市居民每月的用水量的中位数的值(保留两位小数);
(Ⅲ)如图2是该市居民张某2016年1~6月份的月用水费(元)与月份的散点图,其拟合的线性回归方程是. 若张某2016年1~7月份水费总支出为312元,试估计张某7月份的用水吨数.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=x2+bx,则“b<0”是“f(f(x))的最小值与f(x)的最小值相等”的( )
A.充分不必要条件
B.必要不充分条件
C.充分必要条件
D.既不充分也不必要条件
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某班50名学生在一次百米测试中,成绩全部介于13秒与18秒之间,将测试结果按如下方式分成五组:第一组,第二组,…,第五组,如图是按上述分组方法得到的频率分布直方图.
(1)根据频率分布直方图,估计这50名学生百米测试成绩的中位数和平均值(精确到);
(2)若从第一、五组中随机取出两个成绩,列举所有选取方法,并求这两个成绩的差的绝对值大于1的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知圆,直线与圆相切,且交椭圆于, 两点, 是椭圆的半焦距, .
(1)求的值;
(2)为坐标原点,若,求椭圆的方程;
(3)在(2)的条件下,设椭圆的左右顶点分别为, ,动点,直线, 与直线分别交于, 两点,求线段的长度的最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知两条不重合的直线和两个不重合的平面,若,则下列四个命题:①若,则;②若,则; ③若,则;④若,则,其中正确命题的个数是( )
A. 0 B. 1 C. 2 D. 3
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】若函数y=x2+(a+2)x﹣3,x∈[a,b]的图象关于直线x=1对称.
(1)求a、b的值和函数的零点
(2)当函数f(x)的定义域是[0,3]时,求函数f(x)的值域..
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com