精英家教网 > 高中数学 > 题目详情
11.有4张分别标有数字1,2,3,4的红色卡片和4张分别标有数字1,2,3,4的蓝色卡片,从这8张卡片中取出4张卡片排成一行.如果取出的4张卡片所标数字之和等于10,则不同的排法共有(  )种.
A.432B.384C.308D.288

分析 根据题意,分析可得,数字之和为10的情况有①4,4,1,1;②4,3,2,1;③3,3,2,2;再依次利用排列组合公式求得每种情况下的排法数目,进而由分类计数原理,将其相加即可得答案.

解答 解:根据题意,所取出的数字之和为10,共有三种情况:①4,4,1,1;②4,3,2,1;③3,3,2,2;
则分3种情况讨论:
①取出的卡片数字为4,4,1,1时;有A44种取法;
②取出的卡片数字为3,3,2,2时;有A44种取法;
③取出的卡片数字为4,3,2,1时;每个数字都有两种不同的取法,则有24×A44种取法,
则一共有A44+A44+24×A44=432种;
故选:A.

点评 本题考查排列、组合的应用,解题时需要分析所取出的数字来自一种卡片还是两种卡片.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

1.函数$y=\sqrt{-{x^2}-2x+8}$的定义域为A,值域为B,则A∪B=[-4,3].

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.已知集合M={x|x<0,x∈R},N={x|x2+x-2=0,x∈R},则M∩N=(  )
A.ϕB.{-2}C.{1}D.{-2,1}

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知cos(α+$\frac{π}{4}$)=$\frac{7\sqrt{2}}{10}$,cos2α=$\frac{7}{25}$,则sinα+cosα等于(  )
A.$\frac{3}{5}$B.-$\frac{3}{5}$C.-$\frac{1}{5}$D.$\frac{1}{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的上顶点到右顶点的距离为2,左焦点为F(-$\sqrt{2}$,0),过点D(0,3)且斜率为k的直线l交椭圆于A,B两点.
(1)求椭圆C的标准方程及k的取值范围;
(2)在y轴上是否存在定点E,使$\overrightarrow{AE}$•$\overrightarrow{BE}$恒为定值?若存在,求出点E的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知定圆⊙F1:x2+y2+4x+3=0,⊙F2:x2+y2-4x-5=0,动圆M与圆F1、F2都外切或都内切.
(1)求动圆圆心M的轨迹曲线C的方程.
(2)过点F1的直线l与曲线C交于A、B两点,与⊙F2交于P、Q两点,若|PQ|=2,求|AB|.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.已知集合A=$\{x|{(\frac{1}{2})^x}<1\}$,B={x|lgx>0}则A∪B等于(  )
A.{x|x>0}B.{x|x>1}C.RD.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.如果对定义在R上的函数f(x),对任意两个不相等的实数x1,x2都有x1f(x1)+x2f(x2)>x1f(x2)+x2f(x1),则称函数f(x)“H函数”.下列函数是“H函数”的所有序号为①③.
①y=ex+x;②y=x2;③y=3x-sinx;④$\left\{\begin{array}{l}ln|x|,x≠0\\ 0,x=0\end{array}\right.$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.程序框图如图所示,若输入值t∈(0,3),则输出值S的取值范围是(  )
A.(0,4)B.(0,4]C.[0,9]D.(0,3)

查看答案和解析>>

同步练习册答案