精英家教网 > 高中数学 > 题目详情

f(x)=数学公式,若f(m)=3,求m的值.

解:若m≤-1,则f(m)=m+2=3,∴m=1,不符合要求舍去---------(4分)
若-1<m<2,则f(m)=m2=3,∴m=(m=-不符合要求舍 )--(8分)
若m≥2,则f(m)=3m=3,∴m=1,不符合要求舍去
综上,∴m=-----------(12分)
分析:分段函数分段处理,我们利用分类讨论的方法,分m≤-1,-1<m<2与m≥2三种情况,根据各段上函数的解析式,分别构造关于m的方程,解方程即可求出满足条件 的m值.
点评:本题考查的知识点是分段函数,分段函数分段处理,这是研究分段函数图象和性质最核心的理念,具体做法是:分段函数的定义域、值域是各段上x、y取值范围的并集,分段函数的奇偶性、单调性要在各段上分别论证;分段函数的最大值,是各段上最大值中的最大者.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设函数f(x)=a2x2(a>0),g(x)=blnx.
(1)若函数y=f(x)图象上的点到直线x-y-3=0距离的最小值为
2
,求a的值;
(2)关于x的不等式(x-1)2>f(x)的解集中的整数恰有3个,求实数a的取值范围;
(3)对于函数f(x)与g(x)定义域上的任意实数x,若存在常数k,m,使得f(x)≥kx+m和g(x)≤kx+m都成立,则称直线y=kx+m为函数f(x)与g(x)的“分界线”.设a=
2
2
,b=e,试探究f(x)与g(x)是否存在“分界线”?若存在,求出“分界线”的方程;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

对于定义在区间D上的函数f(x)和g(x),如果对于任意x∈D,都有|f(x)-g(x)|≤1成立,那么称函数f(x)在区间D上可被函数g(x)替代.
(1)若f(x)=
x
2
-
1
x
,g(x)=lnx
,试判断在区间[[1,e]]上f(x)能否被g(x)替代?
(2)记f(x)=x,g(x)=lnx,证明f(x)在(
1
m
,m)(m>1)
上不能被g(x)替代;
(3)设f(x)=alnx-ax,g(x)=-
1
2
x2+x
,若f(x)在区间[1,e]上能被g(x)替代,求实数a的范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=a2x2(a>0),g(x)=blnx.
(1)将函数y=f(x)图象向右平移一个单位即可得到函数y=φ(x)的图象,试写出y=φ(x)的解析式及值域;
(2)关于x的不等式(x-1)2>f(x)的解集中的整数恰有3个,求实数a的取值范围;
(3)对于函数f(x)与g(x)定义域上的任意实数x,若存在常数k,m,使得f(x)≥kx+m和g(x)≤kx+m都成立,则称直线y=kx+m为函数f(x)与g(x)的“分界线”.设a=
2
2
,b=e,试探究f(x)与g(x)是否存在“分界线”?若存在,求出“分界线”的方程;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

对于定义在区间D上的函数f(x)和g(x),如果对于任意x∈D,都有|f(x)-g(x)|≤1成立,那么称函数f(x)在区间D上可被函数g(x)替代.
(1)若f(x)=
x
2
-
1
x
,g(x)=lnx
,试判断在区间[[1,e]]上f(x)能否被g(x)替代?
(2)记f(x)=x,g(x)=lnx,证明f(x)在(
1
m
,m)(m>1)
上不能被g(x)替代;
(3)设f(x)=alnx-ax,g(x)=-
1
2
x2+x
,若f(x)在区间[1,e]上能被g(x)替代,求实数a的范围.

查看答案和解析>>

科目:高中数学 来源:徐州模拟 题型:解答题

设函数f(x)=a2x2(a>0),g(x)=blnx.
(1)若函数y=f(x)图象上的点到直线x-y-3=0距离的最小值为2
2
,求a的值;
(2)关于x的不等式(x-1)2>f(x)的解集中的整数恰有3个,求实数a的取值范围;
(3)对于函数f(x)与g(x)定义域上的任意实数x,若存在常数k,m,使得f(x)≥kx+m和g(x)≤kx+m都成立,则称直线y=kx+m为函数f(x)与g(x)的“分界线”.设a=
2
2
,b=e,试探究f(x)与g(x)是否存在“分界线”?若存在,求出“分界线”的方程;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案