精英家教网 > 高中数学 > 题目详情
4.下列函数求值算法中需要条件语句的函数是(  )
A.f(x)=x3B.f(x)=x2C.f(x)=4x-x2D.f(x)=$\left\{\begin{array}{l}{-1,x≥0}\\{1,x<0}\end{array}\right.$

分析 根据选项中函数的特点进行分析,得出D中函数是分段函数,算法中用到条件结构.

解答 解:因为函数f(x)=$\left\{\begin{array}{l}{-1,x≥0}\\{1,x<0}\end{array}\right.$是分段函数,求值时要对自变量x进行判断,
所以算法中要用到条件结构,其他选项中的函数都不符合这一特点.
故选:D.

点评 本题考查了分段函数的应用问题与算法语言的应用问题,是基础题目.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

12.数列{an}满足a1=1,nan+1=(n+1)an+n(n+1),n∈N*,求an

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知sin(3π+θ)=$\frac{1}{2}$,求$\frac{sin(θ-\frac{π}{2})}{cosθ[cos(π+θ)-1]}$+$\frac{sin(\frac{5π}{2}-θ)}{cos(θ+2π)cos(3π+θ)+cos(-θ)}$的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.在平面直角坐标系内,点P(a,b)的坐标满足a≠b,且a,b都是集合{1,2,3,4,5,6}中的元素,又点P到原点的距离|OP|≥5,则这样的点P的个数为20.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知集合A={x|x2-5x+4>0},B={x|x2-x-6≤0},求A∩B,A∪B.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.观察下列等式:
$\frac{3}{1×2}×\frac{1}{2}=1-\frac{1}{2^2}$,
$\frac{3}{1×2}×\frac{1}{2}+\frac{4}{2×3}×\frac{1}{2^2}=1-\frac{1}{{3×{2^2}}}$,
$\frac{3}{1×2}×\frac{1}{2}+\frac{4}{2×3}×\frac{1}{2^2}+\frac{5}{3×4}×\frac{1}{2^3}=1-\frac{1}{{4×{2^3}}}$,
…,
由以上等式得$\frac{3}{1×2}×\frac{1}{2}+\frac{4}{2×3}×\frac{1}{2^2}+…+\frac{7}{5×6}×\frac{1}{2^5}$==$1-\frac{1}{{6×{2^5}}}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.在△ABC中,a,b,c分别是三个内角A,B,C的对边,设向量$\overrightarrow{p}$=(b-c,a-c),$\overrightarrow{q}$=(c+a,b),若$\overrightarrow{p}$∥$\overrightarrow{q}$,则角A的大小是(  )
A.90°B.45°C.60°D.30°

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.在数列{an}中,a1=1,an=$\frac{{{a_{n-1}}}}{{c{a_{n-1}}+1}}$(c为常数,n∈N*,n≥2),又a1,a2,a5成公比不为l的等比数列.
(I)求证:{$\frac{1}{a_n}$}为等差数列,并求c的值;
(Ⅱ)设{bn}满足b1=$\frac{2}{3}$,bn=an-1an+1(n≥2,n∈N*),求数列{bn}的前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.下列函数中,在区间(0,+∞)上是增函数的是(  )
A.y=$\frac{1}{x+1}$B.y=2x-1C.y=-|x|D.y=x2-3x

查看答案和解析>>

同步练习册答案