精英家教网 > 高中数学 > 题目详情
20.下列关系正确的是(  )
A.0∉NB.$\sqrt{2}∈Q$C.∅⊆{0}D.∅={0}

分析 根据自然数集,有理数集,空集的定义判断元素与集合,集合与集合间的相互关系.

解答 解:对于A选项,自然数集N是由0和全体正整数构成的集合,所以0∈N,故A错;
对于B选项,有理数集Q是由全体整数和有限小数或无限循环小数构成的集合,
而$\sqrt{2}$是无限不循环的小数,所以$\sqrt{2}$∉Q,故B错;
对于C选项,由于空集∅是任何集合的子集,所以∅⊆{0}是正确的;
对于D选项,∅不含任何元素,而{0}含有一个元素0,所以∅≠{0},故D错.
综合以上分析,选C.

点评 本题主要考查了元素与集合关系的判断,涉及自然数集,有理数集,空集等概念,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

7.已知x${\;}^{\frac{1}{2}}$-x${\;}^{-\frac{1}{2}}$=4,求$\frac{1}{{x}^{-1}+{x}^{1}+3}$的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.求下列各题中的函数f(x)的解析式.
(1)已知函数y=f(x)满足2f(x)+f$({\frac{1}{x}})$=2x,x∈R且x≠0,求f(x);
(2)已知f(x)是二次函数,且满足f(0)=1,f(x+1)=f(x)+2x,求f(x).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.集合A={x|3≤x<7},B={x|2<x<10},求A∪B,A∩B,(∁RA)∩B.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.对于函数若f(x)=ax2+(b+1)x+b-2(a≠0),存在实数x0,使f(x0)=x0成立,则称x0为f(x)的“希望值”.
(1)当a=2,b=-2时,求f(x)的希望值;
(2)若对于任意实数b,函数f(x)恒有希望值,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.数列{an}是公差不为零的等差数列,若a1,a3,a4成等比数列,则公比q=$\frac{1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.已知f(x2-1)的定义域为$[-\sqrt{3},\sqrt{3}]$,则f(x-1)的定义域为(  )
A.[-2,1]B.[0,3]C.[-1,2]D.[-$\sqrt{3}$,$\sqrt{3}$]

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知函数f(x)的定义域是(0,+∞),当x>1时f(x)>0,且f(xy)=f(x)+f(y)
(1)求证:$f({\frac{1}{x}})=-f(x)$
(2)证明:f(x)在定义域上是增函数
(3)如果$f({\frac{1}{3}})=-1$,求满足不等式$f(x)-f({\frac{1}{x-2}})≥2$的x的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.如图,F1,F2是双曲线C:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的左、右焦点,作过F1作两条相互垂直的直线l1,l2,其中直线l1交双曲线右支于点M,直线l2交双曲线左支于点N,以下说法一定正确的是④
①若|F2M|<|F2N|,则∠MF2N为锐角
②若|F2M|<|F2N|,则∠MF2N为钝角
③若|F2M|<|F1N|,则∠MF2N为锐角
④若|F2M|<|F1N|,则∠MF2N为钝角.

查看答案和解析>>

同步练习册答案