精英家教网 > 高中数学 > 题目详情
如图,在四棱锥O-ABCD中,底面ABCD是边长为1的正方形,OA⊥底面ABCD,OA=2,M为OA的中点,N为BC中点,以A为原点,建立适当的空间直角坐标系,利用空间向量解答以下问题
(1)证明:直线BD⊥OC
(2)证明:直线MN∥平面OCD
(3)求异面直线AB与OC所成角的余弦值.
分析:以A为原点,以AO,AB,AD分别为x轴、y轴、z轴建立空间直角坐标系,A-xyz.
(1)要证明BD⊥OC,只要证明
BD
OC
=0
即可;
(2)设平面OCD的法向量为
n
=(x,y,z)
,可得
n
OC
=x+y-2z=0
n
CD
=-x=0
,求出法向量
n
,只要证明
n
MN
=0
即可;
(3)利用cos<
AB
OC
=
AB
OC
|
AB
| |
OC
|
即可得出.
解答:解:以A为原点,以AO,AB,AD分别为x轴、y轴、z轴建立空间直角坐标系,A-xyz.
则B(1,0,0),D(0,1,0),C(1,1,0),O(0,0,2),M(0,0,1),N(1,
1
2
,0)

(1)∵
BD
=(-1,1,0)
OC
=(1,1,-2)
BD
OC
=-1+1+0=0

BD
OC
,∴BD⊥OC;
(2)
CD
=(-1,0,0)
,设平面OCD的法向量为
n
=(x,y,z)
,则
n
OC
=x+y-2z=0
n
CD
=-x=0

令y=2,则x=0,z=1,∴
n
=(0,2,1)

MN
=(1,
1
2
,-1)
,∴
n
MN
=2×
1
2
-1×1=0

而MN?平面OCD,∴MN∥平面OCD.
(3)
AB
=(1,0,0)
,∴cos<
AB
OC
=
AB
OC
|
AB
| |
OC
|
=
1
1+1+(-2)2
=
6
6

∴异面直线AB与OC所成角的余弦值为
6
6
点评:熟练掌握通过建立空间直角坐标系的方法求证垂直、线面平行及求出异面直线所成的角等是解题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

如图,在四棱锥O-ABCD中,底面ABCD四边长为1的菱形,∠ABC=
π4
,OA⊥底面ABCD,OA=2,M为OA的中点,N为BC的中点.
(Ⅰ)证明:直线MN∥平面OCD;
(Ⅱ)求异面直线AB与MD所成角的大小;
(Ⅲ)求二面角A-OD-C的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在四棱锥O-ABCD中,底面ABCD四边长为1的菱形,∠ABC=
π3
,OA⊥底面ABCD,OA=2,M为OA的中点.
(1)求三棱锥B-OCD的体积;
(2)求异面直线AB与MD所成角的余弦值;
注:若直线a⊥平面α,则直线a与平面α内的所有直线都垂直.

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网如图,在四棱锥O-ABCD中,底面ABCD四边长为1的菱形,∠ABC=
π4
,OA⊥底面ABCD,OA=2,M为OA的中点,N为BC的中点
(1)求三棱锥B-OCD的体积;
(2)求异面直线AB与MD所成角的大小;
注:若直线a⊥平面α,则直线a与平面α内的所有直线都垂直.

查看答案和解析>>

科目:高中数学 来源:江苏同步题 题型:解答题

如图,在四棱锥O﹣ABCD中,底面ABCD四边长为1的菱形,∠ABC=,OA⊥底面ABCD,OA=2,M为OA的中点,N为BC的中点.
(Ⅰ)证明:直线MN∥平面OCD;
(Ⅱ)求异面直线AB与MD所成角的大小;
(Ⅲ)求二面角A﹣OD﹣C的余弦值.

查看答案和解析>>

同步练习册答案