精英家教网 > 高中数学 > 题目详情

【题目】已知函数

(1)当 取一切非负实数时,若,求的范围;

(2)若函数存在极大值,求的最小值.

【答案】(1)(2)

【解析】试题分析:(1)当时, ,原题分离参数得恒成立,右边求导求出其最大值即可;(2)对其求导,当时, 上为单增函数,无极大值;当时, 上为增函数,在上为减函数,其中满足,故可得极大值,令,得,对其求导可得其最小值.

试题解析:(1)当时, 恒成立等价于恒成立,令 ,当时, 恒成立,即内单调递减,故,可得内单调递减,故.

(2)

①当时, ,所以,所以上为单增函数,无极大值;

②当时,设方程的根为,则有,即,所以上为增函数,在上为减函数,所以的极大值为,即,因为,所以,令

,则,令,得,所以上为减函数,在上为增函数,所以得最小值为,即的最小值为-1,此时

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】选修4-4:坐标系与参数方程

在平面直角坐标系中,已知曲线为参数),在以原点为极点, 轴的非负半轴为极轴建立的极坐标系中,直线的极坐标方程为: .

(Ⅰ)求曲线的普通方程和直线的直角坐标方程;

(Ⅱ)过点且与直线平行的直线 两点,求点 两点的距离之积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=loga(1﹣x)+loga(x+3),其中0<a<1.
(1)求函数f(x)的定义域;
(2)若函数f(x)的最小值为﹣4,求a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的两个焦点分别为,短轴的两个端点分别为.

(Ⅰ)若为等边三角形,求椭圆的方程;

(Ⅱ)若椭圆的短轴长为,过点的直线与椭圆相交于两点,且,求直线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的两个焦点分别为,短轴的两个端点分别为.

(Ⅰ)若为等边三角形,求椭圆的方程;

(Ⅱ)若椭圆的短轴长为,过点的直线与椭圆相交于两点,且,求直线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知全集U={x|x≤4},集合A={x|﹣2<x<3},B={x|﹣3≤x≤2},求A∩B,(UA)∪B,A∩(UB).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知二次函数f(x)满足f(0)=2和f(x+1)﹣f(x)=2x﹣1对任意实数x都成立.
(1)求函数f(x)的解析式;
(2)当t∈[﹣1,3]时,求y=f(2t)的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,四棱锥中, 平面// 分别为

线段 的中点.

(Ⅰ)求证: //平面

(Ⅱ)求证: 平面

(Ⅲ)写出三棱锥与三棱锥的体积之比.(结论不要求证明)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(本题满分12分)为选拔选手参加中国汉字听写大会,某中学举行了一次汉字听写大赛活动.为了了解本次竞赛学生的成绩情况,从中抽取了部分学生的分数(得分取正整数,满分为100分)作为样本(样本容量为)进行统计.按照的分组作出频率分布直方图,并作出样本分数的茎叶图(图中仅列出了得分在的数据).

1)求样本容量和频率分布直方图中的的值;

2)在选取的样本中,从竞赛成绩在80分以上(含80分)的学生中随机抽取2名学生参加中国汉字听写大会,求所抽取的2名学生中至少有一人得分在内的概率.

查看答案和解析>>

同步练习册答案