【题目】已知函数.
(1)当, 取一切非负实数时,若,求的范围;
(2)若函数存在极大值,求的最小值.
【答案】(1)(2)
【解析】试题分析:(1)当时, ,原题分离参数得恒成立,右边求导求出其最大值即可;(2)对其求导,当时, 在上为单增函数,无极大值;当时, 在上为增函数,在上为减函数,其中满足,故可得极大值,令,得,对其求导可得其最小值.
试题解析:(1)当时, , 恒成立等价于恒成立,令, , ,当时, 恒成立,即在内单调递减,故,可得在内单调递减,故.
(2),
①当时, ,所以,所以在上为单增函数,无极大值;
②当时,设方程的根为,则有,即,所以在上为增函数,在上为减函数,所以的极大值为,即,因为,所以,令则,
设,则,令,得,所以在上为减函数,在上为增函数,所以得最小值为,即的最小值为-1,此时.
科目:高中数学 来源: 题型:
【题目】选修4-4:坐标系与参数方程
在平面直角坐标系中,已知曲线(为参数),在以原点为极点, 轴的非负半轴为极轴建立的极坐标系中,直线的极坐标方程为: .
(Ⅰ)求曲线的普通方程和直线的直角坐标方程;
(Ⅱ)过点且与直线平行的直线交于, 两点,求点到, 两点的距离之积.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=loga(1﹣x)+loga(x+3),其中0<a<1.
(1)求函数f(x)的定义域;
(2)若函数f(x)的最小值为﹣4,求a的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆的两个焦点分别为,短轴的两个端点分别为.
(Ⅰ)若为等边三角形,求椭圆的方程;
(Ⅱ)若椭圆的短轴长为,过点的直线与椭圆相交于两点,且,求直线的方程.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆的两个焦点分别为,短轴的两个端点分别为.
(Ⅰ)若为等边三角形,求椭圆的方程;
(Ⅱ)若椭圆的短轴长为,过点的直线与椭圆相交于两点,且,求直线的方程.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知二次函数f(x)满足f(0)=2和f(x+1)﹣f(x)=2x﹣1对任意实数x都成立.
(1)求函数f(x)的解析式;
(2)当t∈[﹣1,3]时,求y=f(2t)的值域.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,四棱锥中, 平面, // , , , 分别为
线段, 的中点.
(Ⅰ)求证: //平面;
(Ⅱ)求证: 平面;
(Ⅲ)写出三棱锥与三棱锥的体积之比.(结论不要求证明)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】(本题满分12分)为选拔选手参加“中国汉字听写大会”,某中学举行了一次“汉字听写大赛”活动.为了了解本次竞赛学生的成绩情况,从中抽取了部分学生的分数(得分取正整数,满分为100分)作为样本(样本容量为)进行统计.按照, , , , 的分组作出频率分布直方图,并作出样本分数的茎叶图(图中仅列出了得分在, 的数据).
(1)求样本容量和频率分布直方图中的、的值;
(2)在选取的样本中,从竞赛成绩在80分以上(含80分)的学生中随机抽取2名学生参加“中国汉字听写大会”,求所抽取的2名学生中至少有一人得分在内的概率.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com