精英家教网 > 高中数学 > 题目详情

设关于x的函数f(x)=1-2a-2acosx-2sin2x的最小值为f(a).
(1)写出f(a)的表达式;
(2)试确定能使数学公式的a值,并求出此时函数y的最大值.

解:(1)f(x)=1-2a-2acosx-2sin2x=1-2a-2acosx-2(1-cos2x)=2(cosx-2--2a-1.
当a≥2时,则cosx=1时,f(x)取最小值,即f(a)=1-4a;
当-2<a<2时,则cosx=时,f(x)取最小值,即f(a)=--2a-1;
当a≤-2时,则cosx=-1时,f(x)取最小值,即f(a)=1;
综合上述,有f(a)=
(2)若f(a)=,a只能在[-2,2]内.
解方程--2a-1=,得a=-1,和a=-3.因-1∈[-2,2],故a=-1为所求,此时
f(x)=2(cosx+2+;当cosx=1时,f(x)有最大值5.
分析:(1)先根据同角三角函数的基本关系进行化简,然后转化为关于cosx的一元二次函数,再根据一元二次函数的性质与cosx的范围确定函数f(x)的最小值f(a).
(2)根据(1)中的f(a)的解析式确定f(a)=的a的范围,进而令--2a-1=,求出a的值,最后将a的值代入到函数f(x)中即可根据cosx的范围和一元二次函数的性质可求出其最大值.
点评:本题主要考查同角三角函数的基本关系和一元二次函数的基本性质.考查基础知识的综合应用和灵活运用.
练习册系列答案
相关习题

科目:高中数学 来源:2011-2012学年河北省唐山市高二(下)期中数学试卷(文科)(解析版) 题型:解答题

设关于x的函数f(x)=mx2-(2m2+4m+1)x+(m+2)lnx,其中m为实数集R上的常数,函数f(x)在x=1处取得极值0.
(Ⅰ)已知函数f(x)的图象与直线y=k有两个不同的公共点,求实数k的取值范围;
(Ⅱ)设函数,其中p≤0,若对任意的x∈[1,2],总有2f(x)≥g(x)+4x-2x2成立,求p的取值范围.

查看答案和解析>>

科目:高中数学 来源:2012年山东省年高考数学压轴卷(文科)(解析版) 题型:解答题

设关于x的函数f(x)=mx2-(2m2+4m+1)x+(m+2)lnx,其中m为实数集R上的常数,函数f(x)在x=1处取得极值0.
(Ⅰ)已知函数f(x)的图象与直线y=k有两个不同的公共点,求实数k的取值范围;
(Ⅱ)设函数,其中p≤0,若对任意的x∈[1,2],总有2f(x)≥g(x)+4x-2x2成立,求p的取值范围.

查看答案和解析>>

科目:高中数学 来源:江西省月考题 题型:解答题

设关于x的函数f(x)=mx2﹣(2m2+4m+1)x+(m+2)lnx,其中m为R上的常数,若函数f(x)在x=1处取得极大值0.
(1)求实数m的值;
(2)若函数f(x)的图象与直线y=k有两个交点,求实数k的取值范围;
(3)设函数 ,若对任意的x∈[1,2],2f(x)≥g(x)+4x﹣2x2恒成立,求实数p的取值范围.

查看答案和解析>>

科目:高中数学 来源:2011-2012学年湖北省黄冈市浠水二中高三(上)9月数学滚动试卷(文科)(解析版) 题型:解答题

设关于x的函数f(x)=mx2-(2m2+4m+1)x+(m+2)lnx,其中m为R上的常数,若函数f(x)在x=1处取得极大值0.
(1)求实数m的值;
(2)若函数f(x)的图象与直线y=k有两个交点,求实数k的取值范围;
(3)设函数,若对任意的x∈[1,2],2f(x)≥g(x)+4x-2x2恒成立,求实数p的取值范围.

查看答案和解析>>

科目:高中数学 来源:2011-2012学年湖北省荆州中学高三(上)9月质量检查数学试卷(文科)(解析版) 题型:解答题

设关于x的函数f(x)=mx2-(2m2+4m+1)x+(m+2)lnx,其中m为R上的常数,若函数f(x)在x=1处取得极大值0.
(1)求实数m的值;
(2)若函数f(x)的图象与直线y=k有两个交点,求实数k的取值范围;
(3)设函数,若对任意的x∈[1,2],2f(x)≥g(x)+4x-2x2恒成立,求实数p的取值范围.

查看答案和解析>>

同步练习册答案