精英家教网 > 高中数学 > 题目详情
考察等式:
C0m
Crn-m
+
C1m
Cr-1n-m
+…+
Crm
C0n-m
=
Crn
(*),其中n、m、r∈N*,r≤m<n且r≤n-m.某同学用概率论方法证明等式(*)如下:
设一批产品共有n件,其中m件是次品,其余为正品.现从中随机取出r件产品,
记事件Ak={取到的r件产品中恰有k件次品},则P(Ak)=
Ckm
Cr-kn-m
Crn
,k=0,1,2,…,r.
显然A0,A1,…,Ar为互斥事件,且A0∪A1∪…∪Ar=Ω(必然事件),
因此1=P(Ω)=P(A0)+P(A1)+…P(Ar)=
C0m
Crn-m
+
C1m
Cr-1n-m
+…+
Crm
C0n-m
Crn

所以
C0m
Crn-m
+
C1m
Cr-1n-m
+…+
Crm
C0n-m
=
Crn
,即等式(*)成立.
对此,有的同学认为上述证明是正确的,体现了偶然性与必然性的统一;但有的同学对上述证明方法的科学性与严谨性提出质疑.现有以下四个判断:
①等式(*)成立  ②等式(*)不成立  ③证明正确  ④证明不正确
试写出所有正确判断的序号______.
设一批产品共有n件,其中m件是次品,其余n-m件为正品.
现从中随机取出r件产品,记事件Ak={取到的产品中恰有k件次品},则取到的产品中恰有k件次品共有
Ckm
Cr-kn-m
种情况,又从中随机取出r件产品,共有
Crn
种情况,k=0,1,…,r,故其概率为P(Ak)=
Ckm
Cr-kn-m
Crn
,k=0,1,…,r.
∵A0,A1,…,Ar为互斥事件,且A0∪A1∪…∪Ar=Ω(必然事件),
因此1=P(Ω)=P(A0)+P(A1)+…P(Ar)=
C0m
Crn-m
+
C1m
Cr-1n-m
+…+
Crm
C0n-m
Crn

所以Cm0Cn-mr+Cm1Cn-mr-1+…+CmrCn-m0=Cnr,即等式(*)成立.
从而可知正确的序号为:①③
故答案为:①③
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2010•福建模拟)考察等式:
C
0
m
C
r
n-m
+
C
1
m
C
r-1
n-m
+…+
C
r
m
C
0
n-m
=
C
r
n
(*),其中n、m、r∈N*,r≤m<n且r≤n-m.某同学用概率论方法证明等式(*)如下:
设一批产品共有n件,其中m件是次品,其余为正品.现从中随机取出r件产品,
记事件Ak={取到的r件产品中恰有k件次品},则P(Ak)=
C
k
m
C
r-k
n-m
C
r
n
,k=0,1,2,…,r.
显然A0,A1,…,Ar为互斥事件,且A0∪A1∪…∪Ar=Ω(必然事件),
因此1=P(Ω)=P(A0)+P(A1)+…P(Ar)=
C
0
m
C
r
n-m
+
C
1
m
C
r-1
n-m
+…+
C
r
m
C
0
n-m
C
r
n

所以
C
0
m
C
r
n-m
+
C
1
m
C
r-1
n-m
+…+
C
r
m
C
0
n-m
=
C
r
n
,即等式(*)成立.
对此,有的同学认为上述证明是正确的,体现了偶然性与必然性的统一;但有的同学对上述证明方法的科学性与严谨性提出质疑.现有以下四个判断:
①等式(*)成立  ②等式(*)不成立  ③证明正确  ④证明不正确
试写出所有正确判断的序号
①③
①③

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

考察等式:Cm0Cn-mr+Cm1Cn-mr-1+…+CmrCn-m0=Cnr(*)其中n、m、r∈N*,r≤m<n且r≤n-m.某同学用概率论方法证明等式(*)如下:设一批产品共有n件,其中m件是次品,其余为正品.现从中随机取出r件产品,记事件Ak={取到的件产品中恰有件次品},则数学公式,k=0,1,…,r.显然A0,A1,…,Ar为互斥事件,且A0∪A1∪…∪Ar=Ω(必然事件),因此1=P(Ω)=P(A0)+P(A1)+…P(Ar)=数学公式,所以Cm0Cn-mr+Cm1Cn-mr-1+…+CmrCn-m0=Cnr,即等式(*)成立.对此,有的同学认为上述证明是正确的,体现了偶然性与必然性的统一;但有的同学对上述证明方法的科学性与严谨性提出质疑.现有以下四个判断:
①等式(*)成立;②等式(*)不成立③证明正确;④证明不正确
试写出所有正确判断的序号________.

查看答案和解析>>

科目:高中数学 来源:2010年福建省普通高中毕业班质量检查数学试卷(理科)(解析版) 题型:解答题

考察等式:(*),其中n、m、r∈N*,r≤m<n且r≤n-m.某同学用概率论方法证明等式(*)如下:
设一批产品共有n件,其中m件是次品,其余为正品.现从中随机取出r件产品,
记事件Ak={取到的r件产品中恰有k件次品},则,k=0,1,2,…,r.
显然A,A1,…,Ar为互斥事件,且A∪A1∪…∪Ar=Ω(必然事件),
因此1=P(Ω)=P(A)+P(A1)+…P(Ar)=
所以,即等式(*)成立.
对此,有的同学认为上述证明是正确的,体现了偶然性与必然性的统一;但有的同学对上述证明方法的科学性与严谨性提出质疑.现有以下四个判断:
①等式(*)成立  ②等式(*)不成立  ③证明正确  ④证明不正确
试写出所有正确判断的序号   

查看答案和解析>>

科目:高中数学 来源:福建省模拟题 题型:填空题

考察等式:
     (*)
其中n,m,r∈N*,r≤m<n且r≤n-m,
某同学用概率论方法证明等式(*)如下:设一批产品共有n件,其中m件是次品,其余为正品,现从中随机取出r件产品,记事件Ak={取到的r件产品中恰有k件次品},则,k=0,1,…,r。显然A0,A1,…,Ar为互斥事件,且(必然事件),因此
所以,,即等式(*)成立。
对此,有的同学认为上述证明是正确的,体现了偶然性与必然性的统一;但有的同学对上述证明方法的科学性与严谨性提出质疑.
现有以下四个判断:①等式(*)成立;②等式(*)不成立;③证明正确;④证明不正确,试写出所有正确判断的序号(    )。

查看答案和解析>>

同步练习册答案