精英家教网 > 高中数学 > 题目详情
14.经过点P(-3,0),Q(0,-2)的椭圆的标准方程是(  )
A.$\frac{x^2}{9}+\frac{y^2}{4}=1$B.$\frac{x^2}{4}+\frac{y^2}{9}=1$C.$\frac{x^2}{3}+\frac{y^2}{2}=1$D.$\frac{x^2}{2}+\frac{y^2}{3}=1$

分析 根据经过点P(-3,0),Q(0,-2),表示出长轴,短轴长,然后写出椭圆的标准方程即可.

解答 解:∵经过点P(-3,0),Q(0,-2)
∴a=3,b=2
∴椭圆的标准方程为$\frac{x^2}{9}+\frac{y^2}{4}=1$
故选:A.

点评 此题考查学生会利用待定系数法求椭圆的标准方程,是一道基础题.学生做题时应注意椭圆的焦点所在位置.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

4.将两个直角三角形如图拼在一起,当E点在线段AB上移动时,若$\overrightarrow{AE}=λ\overrightarrow{AC}+μ\overrightarrow{AD}$,当λ取最大值时,λ-μ的值是$\sqrt{3}$-2.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知动圆过定点A(0,2),且在x轴上截得的弦长MN=4
(Ⅰ)求动圆的圆心C的轨迹方程L.
(Ⅱ)若A,B为L上的两动点,线段AB过点F(0,1),且$\overrightarrow{AF}$=λ$\overrightarrow{FB}$(λ>0).过A、B两点分别作曲线L的切线,设其交点为P.设△ABP的面积为S,求S的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.函数y=2cosx(sinx+cosx)的最大值为(  )
A.2B.$\sqrt{2}$-1C.$\sqrt{2}$D.$\sqrt{2}$+1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知函数f(x)=$\frac{x}{1+{x}^{2}}$是定义在(-1,1)上的函数,
(1)试判断f(x)的奇偶性;
(2)用定义证明f(x)在(-1,1)上是增函数;
(3)解不等式f(x-1)+f(x)<0.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.偶函数f(x)满足f(x+2)=f(x),且当x∈[0,1]时,f(x)=-x+1,则关于x的方程f(x)=($\frac{1}{2}$)x在x∈[-3,3]上解的个数是3.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.函数f(x)是R上的奇函数,且当x>0时,函数的解析式为f(x)=$\frac{2}{x}$-1.
(1)用定义证明f(x)在(0,+∞)上是减函数;
(2)求当x<0时,函数的解析式.
(3)用分段函数形式写出函数f(x)在R上的解析式.当f(a)=3时,求a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.已知$\overrightarrow{a}$=(1,0),$\overrightarrow{b}$=(1,1),且($\overrightarrow{a}$+$λ\overrightarrow{b}$)$⊥\overrightarrow{a}$,则λ=-1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.已知向量$\overrightarrow{a}$=(1,0),$\overrightarrow{b}$=(0,-2),则与向量$\overrightarrow{b}$-$\overrightarrow{a}$垂直的单位向量为(  )
A.(-2,1)或(2,-1)B.(-1,2)或(1,-2)
C.(-$\frac{\sqrt{5}}{5}$,$\frac{2\sqrt{5}}{5}$)或($\frac{\sqrt{5}}{5}$,-$\frac{2\sqrt{5}}{5}$)D.(-$\frac{2\sqrt{5}}{5}$,$\frac{\sqrt{5}}{5}$)或($\frac{2\sqrt{5}}{5}$,-$\frac{\sqrt{5}}{5}$)

查看答案和解析>>

同步练习册答案