精英家教网 > 高中数学 > 题目详情
设数列{an}、{bn}满足a1=4,a2=
5
2
,an+1=
an+bn
2
,bn=
2anbn
an+bn

(1)证明:an>2,0<bn<2(n∈N*);
(2)设cn=log3
an+2
an-2
,求数列{cn}的通项公式;
(3)设数列{an}的前n项和为Sn,数列{bn}的前n项和为Tn,数列{anbn}的前n项和为{Pn},求证:Sn+Tn<Pn+
8
3
.(n≥2)
(本题满分16分)
(1)∵an+1=
an+bn
2
,bn+1=
2anbn
an+bn

两式相乘得anbn=an+1bn+1
∴{anbn}为常数列,∴anbn=a1b1=4;(2分)
bn=
4
an

an+1=
1
2
(an+
4
an
)>2

∴0<bn<2;
(若an=2,则an+1=2,从而可得{an}为常数列与a1=4矛盾);(4分)
(2)∵cn=log3
an+2
an-2

cn+1=log3
an+1+2
an+1-2

=log3
1
2
an+
2
an
+2
1
2
an+
2
an
-2

=log3(
an+2
an-2
)2

=2log3(
an+2
an-2
)

cn+1
Cn
=
2log3(
an+2
an-2
)
log3(
an+2
an-2
)
=2,
∴{cn}为等比数列,
∵c1=1,∴cn=2n-1.(8分)
(3)由cn=2n-1,知an=2•
32n-1+1
32n-1-1
=2(1+
2
32n-1-1
)=2+
4
32n-1-1

dn=
4
32n-1-1
,数列{dn}的前n项和为Dn,很显然只要证明Dn
8
3
,(n≥2),
∵n≥2,∴32n-1+1≥4
dn=
4
32n-1-1
=
4
(32n-1)2-1
=
4
(32n-x+1)(32n-x-1)
1
4
dn-1

∴dn=
4
(32n-1+1)(32n-1)
1
4
dn-1
(
1
4
)
2
dn-2
≤…≤(
1
4
)
n-2
d2
所以Dn=d1+(d2+d3+…+dn)≤d1+[1+
1
4
+(
1
4
)2+…+(
1
4
)n-2]d2

≤2+
1
2
[1-(
1
4
)n-2]
1-
1
4
=2+
2
3
[1-(
1
4
)n-2]
=
8
3
-
2
3
(
1
4
)n-2
8
3

所以Sn<2n+
8
3
.(14分)
又anbn=4,bn<2,故pn=4n,且Tn<2n,
所以Sn+Tn<2n+
8
3
+2n
=4n+
8
3
=pn+
8
3
,n≥2.(16分)
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

数列{an}的首项为1,前n项和是Sn,存在常数A,B使an+Sn=An+B对任意正整数n都成立.
(1)设A=0,求证:数列{an}是等比数列;
(2)设数列{an}是等差数列,若p<q,且
1
Sp
+
1
Sq
=
1
S11
,求p,q的值.
(3)设A>0,A≠1,且
an
an+1
≤M
对任意正整数n都成立,求M的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

设数列{an}满足a1=0,4an+1=4an+2
4an+1
+1
,令bn=
4an+1

(1)试判断数列{bn}是否为等差数列?并求数列{bn}的通项公式;
(2)令Tn=
b1×b3×b5×…×b(2n-1)
b2×b4×b6×…b2n
,是否存在实数a,使得不等式Tn
bn+1
2
log2(a+1)
对一切n∈N*都成立?若存在,求出a的取值范围;若不存在,请说明理由.
(3)比较bnbn+1bn+1bn的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

设数列{an}的前n项和为Sn,已知a1=1,a2=6,a3=11,且(5n-8)Sn+1-(5n+2)Sn=An+B,n=1,2,3…,其中A,B为常数.数列{an}的通项公式为
an=5n-4
an=5n-4

查看答案和解析>>

科目:高中数学 来源: 题型:

设数列{an}的前n项和为Sn,已知ban-2n=(b-1)Sn
(1)证明:当b=2时,{an-n•2n-1}是等比数列;
(2)求{an}的通项公式.

查看答案和解析>>

科目:高中数学 来源: 题型:

设数列{an}的通项公式为an=an+b(n∈N*,a>0).数列{bn}定义如下:对于正整数m,bm是使得不等式an≥m成立的所有n中的最小值.
(1)若a=2,b=-3,求b10
(2)若a=2,b=-1,求数列{bm}的前2m项和公式.

查看答案和解析>>

同步练习册答案