精英家教网 > 高中数学 > 题目详情
已知数列{an}中,a1=1,an=2an-1+1  (n∈N*,n≥2),则该数列前n项和Sn=
2n+1-n-2
2n+1-n-2
分析:由an=2an-1+1,得an+1=2(an-1+1)(n≥2),可判断{an+1}是以2为公比,2为首项的等比数列,由此可求得an,然后利用分组求和法可得Sn
解答:解:由an=2an-1+1,得an+1=2(an-1+1)(n≥2),
又a1=1,所以{an+1}是以2为公比,2为首项的等比数列,
所以an+1=2•2n-1=2n,即an=2n-1
所以Sn=(2-1)+(22-1)+(23-1)+…+(2n-1)
=(2+22+23+…+2n)-n
=
2(1-2n)
1-2
-n
=2n+1-n-2.
故答案为:2n+1-n-2.
点评:本题考查由数列递推式求数列通项、数列求和等知识,考查转化思想,属中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知数列{an}中,a1=1,an+1-an=
1
3n+1
(n∈N*)
,则
lim
n→∞
an
=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}中,a1=1,an+1=
an
1+2an
,则{an}的通项公式an=
1
2n-1
1
2n-1

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}中,a1=1,a1+2a2+3a3+…+nan=
n+1
2
an+1(n∈N*)

(1)求数列{an}的通项公式;
(2)求数列{
2n
an
}
的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}中,a1=
1
2
Sn
为数列的前n项和,且Sn
1
an
的一个等比中项为n(n∈N*
),则
lim
n→∞
Sn
=
1
1

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}中,a1=1,2nan+1=(n+1)an,则数列{an}的通项公式为(  )
A、
n
2n
B、
n
2n-1
C、
n
2n-1
D、
n+1
2n

查看答案和解析>>

同步练习册答案