精英家教网 > 高中数学 > 题目详情

已知函数f(x)=x3+3(a-1)x2-12ax+b在x=x1处取得极大值M,在x=x2处取得极小值N,
(1)若f(x)的图象在其与y轴的交点处的切线方程是24x-y-10=0,求x1,x2,M,N的值
(2)若f(1)>f(2),且x2-x1=4,b=10求f(x)的单调区间及M,N的值.

解:f′(x)=3x2+6(a-1)x-12a=3(x+2a)(x-2)
(1)由题设知f(0)=-10,且f'(0)=24
∴b=-10,a=-2(2分)
∴f(x)=x3-9x2+24x-10 f′(x)=3(x-4)(x-2)
当x∈(-∞,2]时f′(x)>0,f(x)在(-∞,2]上单调递增,
当x∈[2,4]时f′(x)<0,f(x)在[2,4]上单调递减,
当x∈[4,+∞)时f′(x)>0,f(x)在(-∞,2]上单调递增,(2分)
∴当x=2时,f(x)取得极大值10,当x=4时,f(x)取得极小值6
即x1=2,x2=4,M=10,N=6(2分)
(2)∵f′(x)=3(x+2a)(x-2)
若-2a>2,则f(x)在(-∞,2]上递增,与f(1)>f(2)矛盾
若-2a=2,则f'(x)≥0,f(x)无极值,与题设矛盾,(2分)
∴-2a<2,f(x)在(-∞,-2a]和[2,+∞)上单调递增,在[-2a,2]上单调递减,
∴x1=-2a,x2=2,从而2+2a=4,∴a=1(3分)
故f(x)的单调递增区间是(-∞,-2]和[2,+∞),单调递减区间是[-2,2]f(x)=x3-12x+10,M=26,N=-6(2分)
分析:(1)利用导数为0,通过切线方程是24x-y-10=0,求出a,b,得到函数的表达式,求出x1,x2,M,N的值.
(2)求出函数的导数,利用函数的单调性,以及f(1)>f(2),且x2-x1=4,b=10,即可求f(x)的单调区间及M,N的值.
点评:本题是中档题,考查函数的导数与函数的极值最值的关系,注意函数的导数与直线的斜率的关系,考查计算能力.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网已知函数f(x)=Asin(ωx+φ)(x∈R,A>0,ω>0,|φ|<
π
2
)的部分图象如图所示,则f(x)的解析式是(  )
A、f(x)=2sin(πx+
π
6
)(x∈R)
B、f(x)=2sin(2πx+
π
6
)(x∈R)
C、f(x)=2sin(πx+
π
3
)(x∈R)
D、f(x)=2sin(2πx+
π
3
)(x∈R)

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•深圳一模)已知函数f(x)=
1
3
x3+bx2+cx+d
,设曲线y=f(x)在与x轴交点处的切线为y=4x-12,f′(x)为f(x)的导函数,且满足f′(2-x)=f′(x).
(1)求f(x);
(2)设g(x)=x
f′(x)
 , m>0
,求函数g(x)在[0,m]上的最大值;
(3)设h(x)=lnf′(x),若对一切x∈[0,1],不等式h(x+1-t)<h(2x+2)恒成立,求实数t的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•上海模拟)已知函数f(x)=(
x
a
-1)2+(
b
x
-1)2,x∈(0,+∞)
,其中0<a<b.
(1)当a=1,b=2时,求f(x)的最小值;
(2)若f(a)≥2m-1对任意0<a<b恒成立,求实数m的取值范围;
(3)设k、c>0,当a=k2,b=(k+c)2时,记f(x)=f1(x);当a=(k+c)2,b=(k+2c)2时,记f(x)=f2(x).
求证:f1(x)+f2(x)>
4c2
k(k+c)

查看答案和解析>>

科目:高中数学 来源:上海模拟 题型:解答题

已知函数f(x)=(
x
a
-1)2+(
b
x
-1)2,x∈(0,+∞)
,其中0<a<b.
(1)当a=1,b=2时,求f(x)的最小值;
(2)若f(a)≥2m-1对任意0<a<b恒成立,求实数m的取值范围;
(3)设k、c>0,当a=k2,b=(k+c)2时,记f(x)=f1(x);当a=(k+c)2,b=(k+2c)2时,记f(x)=f2(x).
求证:f1(x)+f2(x)>
4c2
k(k+c)

查看答案和解析>>

科目:高中数学 来源:深圳一模 题型:解答题

已知函数f(x)=
1
3
x3+bx2+cx+d
,设曲线y=f(x)在与x轴交点处的切线为y=4x-12,f′(x)为f(x)的导函数,且满足f′(2-x)=f′(x).
(1)求f(x);
(2)设g(x)=x
f′(x)
 , m>0
,求函数g(x)在[0,m]上的最大值;
(3)设h(x)=lnf′(x),若对一切x∈[0,1],不等式h(x+1-t)<h(2x+2)恒成立,求实数t的取值范围.

查看答案和解析>>

同步练习册答案