精英家教网 > 高中数学 > 题目详情
3.已知函数f(x)=ln(|x|+1)+$\sqrt{{x^2}+1}$,则使得f(x)>f(2x-1)的x的取值范围是(  )
A.$({\frac{1}{3},1})$B.$({-∞,\frac{1}{3}})∪({1,+∞})$C.(1,+∞)D.$({-∞,\frac{1}{3}})$

分析 判断函数f(x)是定义域R上的偶函数,且在x≥0时单调递增,
把不等式f(x)>f(2x-1)转化为|x|>|2x-1|,求出解集即可.

解答 解:∵函数f(x)=ln(|x|+1)+$\sqrt{{x^2}+1}$为定义域R上的偶函数,
且在x≥0时,函数单调递增,
∴f(x)>f(2x-1)等价为f(|x|)>f(|2x-1|),
即|x|>|2x-1|,
两边平方得x2>(2x-1)2
即3x2-4x+1<0,
解得$\frac{1}{3}$<x<1;
∴使得f(x)>f(2x-1)的x的取值范围是($\frac{1}{3}$,1).
故选:A.

点评 本题考查了函数的奇偶性与单调性的应用问题,也考查了转化思想的应用问题,是综合性题目.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

13.已知△ABC的面积S满足1$≤S≤\sqrt{3}$,且$\overrightarrow{AC}•\overrightarrow{CB}=-2$,∠ACB=θ.
(1)求函数f(θ)=sin($θ-\frac{π}{4}$)+4$\sqrt{2}$sinθcosθ-cos($θ+\frac{π}{4}$)-2的最大值;
(2)若$\overrightarrow{m}$=(sin2A,cos2A),$\overrightarrow{n}$=(cos2B,sin2B),求|2$\overrightarrow{m}$-3$\overrightarrow{n}$|的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.已知下列命题
①b2=ac,则a,b,c成等比数列;
②若{an}为等差数列,且常数c>0,则数列{can}为等比数列;
③若{an}为等比数列,且常数c>0,则数列{can}为等比数列;
④常数列既为等差数列,又是等比数列.
其中,真命题的个数为(  )
A.1个B.2个C.3个D.4个

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.函数y=log4(2x+3-x2)值域为(-∞,1].

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.命题“正方形是平行四边形”逆否命题为如果一个四边形不为平行四边形,则这个四边形不为正方形.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.log89•log32=$\frac{2}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.设椭圆的中心在原点,对称轴为坐标轴,且长轴长是短轴长的2倍.又点P(4,1)在椭圆上,求该椭圆的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.幂函数f(x)的图象过点$(2,\frac{1}{4})$,则f(x)的一个单调递减区间是(  )
A.(0,+∞)B.[0,+∞)C.(-∞,0]D.(-∞,0)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知f(x)是定义在R上的奇函数,当x<0时,f(x)=x2-3x+2,求f(x)的解析式.

查看答案和解析>>

同步练习册答案