精英家教网 > 高中数学 > 题目详情

【题目】在△ABC中,内角A,B,C所对的边分别为a,b,c,且a+b+c=16.
(1)若a=4,b=5,求cosC的值;
(2)若sinA+sinB=3sinC,且△ABC的面积S=18sinC,求a和b的值.

【答案】
(1)解:由题意可知c=16﹣(a+b)=7

由余弦定理得


(2)解:由

可得

化简得sinA+sinAcosB+sinB+sinBcosA=4sinC

即sinA+sinB+sin(A+B)=4sinC,

sinA+sinB=3sinC即a+b=3c

又a+b+c=16∴a+b=12,

由于

,即a=b=6


【解析】(1)求出c,根据余弦定理求出C的余弦值即可;(2)根据倍角公式以及三角形的面积公式得到关于a,b的方程组,解出即可.
【考点精析】本题主要考查了正弦定理的定义和余弦定理的定义的相关知识点,需要掌握正弦定理:;余弦定理:;;才能正确解答此题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥P﹣ABCD中,PA⊥底面ABCD,AB⊥AD,AC⊥CD,∠ABC=60°,PA=AB=BC,E是PC的中点.

(1)证明CD⊥AE;
(2)证明PD⊥平面ABE;
(3)求二面角A﹣PD﹣C的正切值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在△ABC中,sinB= ,cosA= ,则sinC为( )
A.
B.
C.
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在△ABC中,内角A、B、C对应的边长分别为a、b、c.已知acosB﹣ b=
(1)求角A;
(2)若a= ,求b+c的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】用秦九韶算法求多项式f(x)=7x7+6x6+5x5+4x4+3x3+2x2+x,当x=3时的值,并将结果化为8进制数.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在边长为25cm的正方形中挖去边长为23cm的两个等腰直角三角形,现有均匀的粒子散落在正方形中,问粒子落在中间带形区域的概率是多少?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的四个顶点组成的四边形的面积为,且经过点.

1)求椭圆的方程;

(2)若椭圆的下顶点为,如图所示,点为直线上的一个动点,过椭圆的右焦点的直线垂直于,且与交于两点,与交于点,四边形的面积分别为.的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在四棱锥中, 平面 的中点, .

(1)求证:

(2)求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

1)若,求函数的极值;

2)若 ,使得),求实数的取值范围.

查看答案和解析>>

同步练习册答案