精英家教网 > 高中数学 > 题目详情
设f(x)为二次函数,且f(1)=1,f(x+1)-f(x)=-4x+1.
(1)求f(x)的解析式;
(2)设g(x)=f(x)-x-a,若函数g(x)在实数R上没有零点,求a的取值范围.
考点:抽象函数及其应用,函数的零点
专题:函数的性质及应用
分析:(1)用待定系数法,设出f(x)的解析式,f(x+1)-f(x)=-4x+1中,求出系数即可.
(2)可求得g(x)=-2x2+2x-a,g(x)在实数R上没有零点,?△=4-8a<0,从而可求得a的取值范围
解答: 解:(1)设f(x)=ax2+bx+c(a≠0)
则f(x+1)-f(x)=2ax+a+b
所以2ax+a+b=1-4x对一切x∈R成立.故
2a=-4
a+b=1

所以
a=-2
b=3

又因为f(1)=1,所以a+b+c=1,所以c=0.
故f(x)=-2x2+3x
(2)g(x)=f(x)-x-a=-2x2+2x-a,
函数g(x)在实数R上没有零点,则函数图象与x轴没有交点
故△=4-8a<0,
解之得a>
1
2
点评:本题考查求解函数解析式及一元二次方程的根的分布与系数的关系,着重考查待定系数法,考查二次函数零点,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知椭圆C的方程为
x2
4
+
y2
3
=1,直线l0:x=4,A是椭圆C的右顶点,点P(x1,y1)是椭圆上异于左,右顶点的一个动点,直线PA与l0交于点M1,直线l过点P且与椭圆交于另一点B(x2,y2),与l0交于点M2
(1)若直线l经过椭圆的左焦点F,且使得
AP
AB
=3,求直线l的方程;
(2)若点B恰为椭圆的左顶点,同x轴上是否存在定点D,使得变化的点P,以M1M2为直径的圆总经过点D,若存在,求这样的圆面积的最小值;若不存在;请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

关于x的不等式sin2x+acosx-a2≤1+cosx对一切x∈R恒成立,则实数a的取值范围为(  )
A、(-1,
1
3
B、[-1,
1
3
]
C、(-∞,-1]∪[
1
3
,+∞)
D、(-∞,-1)∪(
1
3
,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
x2-2ax+1,x≤
1
2
loga(x+
1
2
)+
1
2
x>
1
2
是定义域上的单调减函数,则a的取值范围是(  )
A、(1,+∞)
B、[2,+∞)
C、(1,2)
D、[
1
2
3
4
]

查看答案和解析>>

科目:高中数学 来源: 题型:

函数f(x)=
sinπx2-1<x<0
ex-1x≥0
,若f(2)+f(α)=e+1,则α的所有可能值为(  )
A、1
B、-
2
2
C、1或-
2
2
D、1或
2
2

查看答案和解析>>

科目:高中数学 来源: 题型:

已知向量
a
b
满足
a
=(2,0),|
b
|=1,
a
b
的夹角为120°,求|
a
+2
b
|.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,正方形ABCD的边长为1,点P,Q分别在边AB,AD上,且PQ=1,设AP+AQ=x,记△CPQ的面积函数为S=f(x).
(1)当AP=AQ时,求S的值;
(2)是否存在实数x,使得S=
2
3
?若存在,求出x的值,若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在棱长为1的正方体ABCD-A1B1C1D1中,E是棱BC上的一点,则三棱锥D1-B1C1E的体积等于(  )
A、
1
3
B、
5
12
C、
3
6
D、
1
6

查看答案和解析>>

科目:高中数学 来源: 题型:

已知圆C1:(x-2cosθ)2+(y-2sinθ)2=1与圆C2:x2+y2=1,在下列说法中:
①对于任意的θ,圆C1与圆C2始终有四条公切线;
②对于任意的θ,圆C1与圆C2始终相切;
③P,Q分别为圆C1与圆C2上的动点,则|PQ|的最大值为4.
④直线l:2(m+3)x+3(m+2)y-(2m+5)=0(m∈R)与圆C2一定相交于两个不同的点;
其中正确命题的序号为
 

查看答案和解析>>

同步练习册答案