精英家教网 > 高中数学 > 题目详情

【题目】设U=R,集合A={x|x2+3x+2=0},B={x|x2+(m+1)x+m=0},若(A)B=,求m的值.

【答案】m=1或2

【解析】方法一:A={-2,-1},

由(A)B=得BA,

方程x2+(m+1)x+m=0的判别式:

Δ=(m+1)2-4m=(m-1)20,B,

B={-1}或B={-2}或B={-1,-2}.

若B={-1},则m=1;

若B={-2},则应有-(m+1)=(-2)+(-2)=-4且m=(-2)·(-2)=4,这两式不能同时成立,

B{-2};

若B={-1,-2},则应有-(m+1)=(-1)+(-2)=-3且m=(-1)·(-2)=2,由这两式得m=2.

经检验知m=1和m=2符合条件.m=1或2.

方法二:本题集合B中的方程的根是x1=-1,x2=-m.

当-m-1时集合B={-1,-m},此时只能A=B,即m=2;当-m=-1时集合B={-1},此时集合B是集合A的真子集,也符合要求.m=1或2.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,四棱锥P-ABCD中,底面ABCD为矩形,PA⊥平面ABCD,E为PD的中点.

(1) 证明:PB∥平面AEC

(2) 设二面角D-AE-C为60°,AP=1,AD=,求三棱锥E-ACD的体积

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设数列{an}的前n项和为Sn,n∈N*.已知a1=1,a2,a3,且当n≥2时,4Sn+2+5Sn=8Sn+1+Sn-1.

(1)求a4的值;

(2)证明:为等比数列;

(3)求数列{an}的通项公式.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知过定点P(-2,1)作直线l分别与x、y轴交于A、B两点,

(1)求经过点P且在两坐标轴上的截距相等的直线l方程.

(2)求使面积为4时的直线l方程。

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列说法:

①分类变量的随机变量越大,说明“有关系”的可信度越大.

②以模型去拟合一组数据时,为了求出回归方程,设,将其变换后得到线性方程,则的值分别是和0.3.

③根据具有线性相关关系的两个变量的统计数据所得的回归直线方程为中,

.正确的个数是( )

A. 0 B. 1 C. 2 D. 3

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数yx有如下性质:如果常数t>0,那么该函数在(0, ]上是减函数,在[,+∞)上是增函数.

(1)已知f(x)=x∈[0,1],利用上述性质,求函数f(x)的单调区间和值域;

(2)对于(1)中的函数f(x)和函数g(x)=-x-2a,若对任意x1∈[0,1],总存在x2∈[0,1],使得g(x2)=f(x1)成立,求实数a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知二次函数的图像经过坐标原点,其到函数为,数列的前项和为,点均在函数的图像上.

(I)求数列的通项公式;

)设是数列的前n项和,求使得对所有都成立的最小正整数m.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(Ⅰ)当时,证明: 在定义域上为减函数;

(Ⅱ)若.讨论函数的零点情况.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(1)已知椭圆方程为,点

i.若关于原点对称的两点记直线的斜率分别为,试计算的值;

ii.若关于原点对称的两点记直线的斜率分别为,试计算的值;

(2)根据上题结论探究:若是椭圆上关于原点对称的两点,点是椭圆上任意一点,且直线的斜率都存在,并分别记为,试猜想的值,并加以证明.

查看答案和解析>>

同步练习册答案