精英家教网 > 高中数学 > 题目详情
6.求直线l1:$\frac{x-1}{1}$=$\frac{y}{-4}$=z+3与l2:$\frac{x}{2}$=$\frac{y+2}{-2}$=$\frac{z}{-1}$的夹角.

分析 由题意,直线的方向向量分别为(1,-4,1),(2,-2,-1),利用向量的夹角公式,即可得出结论.

解答 解:由题意,直线的方向向量分别为(1,-4,1),(2,-2,-1),
设直线l1:$\frac{x-1}{1}$=$\frac{y}{-4}$=z+3与l2:$\frac{x}{2}$=$\frac{y+2}{-2}$=$\frac{z}{-1}$的夹角为α,则
cosα=|$\frac{2+8-1}{\sqrt{1+16+1}•\sqrt{4+4+1}}$|=$\frac{\sqrt{2}}{2}$,
∴α=$\frac{π}{4}$.

点评 本题考查两条直线的夹角,考查向量知识的运用,正确计算是关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

16.已知定义在R上的函数f(x)对任意的实数a、b都有f(a+b)=f(a)+f(b),并且当x>0时,f(x)>0
(1)求证:f(x)是单调递增的奇函数;
(2)若f(1)=1,解关于m的不等式f(3m2-m-2)<2.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知an=$\frac{1}{({2}^{n}-1)({2}^{n+1}-1)}$,求证:Sn<$\frac{19}{42}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.设U为全集,A,B是集合,则“存在集合C使得A?C,B⊆∁UC”是“A∩B=∅”的(  )
A.充分而不必要的条件B.必要而不充分的条件
C.充要条件D.既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.设a,b,c∈R+,且ab+bc+ca=108,则$\frac{ab}{c}+\frac{bc}{a}+\frac{ca}{b}$的最小值是18.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.在平面直角坐标系xOy中,圆C的圆心为C(3,1),且直线x=6与圆C相切.
(1)求圆C的方程;
(2)若直线x-y=0与圆C交于A,B两点,求弦长|AB|的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.某中学高中一年级有400人,高中二年级有320人,高中三年级有280人,现从中抽取一个容量为200人的样本,则高中三年级被抽取的人数为56.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知数列{an}中,a1=l,在a1,a2之间插人1个数,在a2,a3之间插人2个数,在a3,a4之间插入3个数,…,在an,an+1之间插人n个数,使得所有插人的数和原数列{an}中的所有项按原有位置顺序构成一个正项等差数列{bn}.
(1)若a3=11,求{bn}的通项公式;
 (2)设数列{bn}的前n项和为Sn,且满足$\sqrt{2{S}_{n}+λ}$=bn+μ(λ,μ为常数),求{an}的通项公式•

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知A、B是抛物线x2=2y上相异的两个动点,且满足$\overrightarrow{OA}$•$\overrightarrow{OB}$=-1.
(1)求证:直线AB恒过一定点.并求出该点坐标;
(2)求直线AB与抛物线围成的封闭区域的面积的最小值.

查看答案和解析>>

同步练习册答案