精英家教网 > 高中数学 > 题目详情

【题目】经销商销售某种产品,在一个销售季度内,每售出该产品获利润元;未售出的产品,每亏损元.根据以往的销售记录,得到一个销售季度内市场需求量的频率分布直方图,如图所示.经销商为下一个销售季度购进了该产品.用(单位:,)表示下一个销售季度内的市场需求量,(单位:元)表示下一个销售季度内经销该产品的利润.

(1)将表示为的函数;

(2)根据直方图估计利润不少于元的概率.

【答案】(1)(2)0.9

【解析】

1)由题意先分段写出,当时,当时,和利润值,最后利用分段函数的形式进行综合即可;

2)利用(1)求出利润不少于32000元时,再利用频率分布直方图求得的频率为,利用样本估计总体的方法得出利润y不少于32000的概率估计值.

(1)

(2)由(1)知利润不少于元相当于

由直方图可知需求量在之间的频率为

所以下一个销售季度经销利润不少于元的概率估计值为

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数f(x)excos xx.

(1)求曲线yf(x)在点(0f(0))处的切线方程;

(2)求函数f(x)在区间上的最大值和最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,一张矩形白纸ABCD,AB=10,AD=,E,F分别为AD,BC的中点,现分别将△ABE,△CDF沿BE,DF折起,且A、C在平面BFDE同侧,下列命题正确的是____________(写出所有正确命题的序号)

①当平面ABE∥平面CDF时,AC∥平面BFDE

②当平面ABE∥平面CDF时,AE∥CD

③当A、C重合于点P时,PG⊥PD

④当A、C重合于点P时,三棱锥P-DEF的外接球的表面积为150

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某公司计划在办公大厅建一面长为米的玻璃幕墙.先等距安装根立柱,然后在相邻的立柱之间安装一块与立柱等高的同种规格的玻璃.一根立柱的造价为6400元,一块长为米的玻璃造价为元.假设所有立柱的粗细都忽略不计,且不考虑其他因素,记总造价为元(总造价=立柱造价+玻璃造价).

(1)求关于的函数关系式;

(2)当时,怎样设计能使总造价最低?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

1)求定义域,并判断函数fx)的奇偶性;

2)若f1+f2=0,证明函数fx)在(0+∞)上的单调性,并求函数fx)在区间[14]上的最值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】选修4-4:坐标系与参数方程

在平面直角坐标系中,直线的参数方程为为参数,),为极点,以轴正半轴为极轴,建立极坐标系,曲线的极坐标方程为

(Ⅰ)求直线的普通方程和曲线的直角坐标方程;

(Ⅱ)设,直线交曲线两点,是直线上的点,且,当最大时,求点的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数fx=x2+bx+c,其中bcR

1)当fx)的图象关于直线x=1对称时,b=______

2)如果fx)在区间[-11]不是单调函数,证明:对任意xR,都有fx)>c-1

3)如果fx)在区间(01)上有两个不同的零点.求c2+1+bc的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(Ⅰ)求函数的单调区间;

(Ⅱ)若,求证:.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数fx=x2-2ax+5

1)若fx)的定义域和值域均是[1a],求实数a的值;

2)若a≤1,求函数y=|fx|[01]上的最大值.

查看答案和解析>>

同步练习册答案