精英家教网 > 高中数学 > 题目详情

如图,已知点M、N是正方体ABCD-A1B1C1D1的两棱A1A与A1B1的中点,P是正方形ABCD的中心,

(1)求证:平面.
(2)求证:平面

(1)(2)证明过程详见试题解析.

解析试题分析:(1)因为为中点,所以,易证;(2)先根据三角形相似证明,再根据已知证明,即可证明平面.
试题解析:(1)证明:连接,则共线,          2分
因为为中点,所以 

因为             5分
2)连,因为,所以
 ①  8分


 ②                               11分
因为以及 ①②得:平面.            12分
考点:直线与平面的位置关系、空间想象能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

如图所示,在三棱柱中,,点分别是的中点.
 
(1)求证:平面∥平面
(2)求证:平面⊥平面
(3)若,求异面直线所成的角。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,在直四棱柱ABCDA1B1C1D1中,底面ABCD为等腰梯形,AB∥CD,且AB=2CD,在棱AB上是否存在一点F,使平面C1CF∥平面ADD1A1?若存在,求点F的位置;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,在正方体ABCD-A1B1C1D1中,对角线A1C与平面BDC1交于点O,AC、BD交于点M,E为AB的中点,F为AA1的中点.求证:
 
(1)C1、O、M三点共线;
(2)E、C、D1、F四点共面.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

在如图所示的几何体中,四边形是矩形,平面分别是的中点.

(1)求证:∥平面
(2)求证:平面

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图所示,在矩形ABCD中,AB=a,BC=a,以对角线AC为折线将直角三角形ABC向上翻折到三角形APC的位置(B点与P点重合),P点在平面ACD上的射影恰好落在边AD上的H处.

(1)求证:PA⊥CD;
(2)求直线PC与平面ACD所成角的正切值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

在如图所示的几何体中,四边形ACC1A1是矩形,FC1∥BC,EF∥A1C1,∠BCC1=90°,点A,B,E,A1在一个平面内,AB=BC=CC1=2,AC=2.

证明:(1)A1E∥AB.
(2)平面CC1FB⊥平面AA1EB.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,在三棱柱ABC­A1B1C1中,底面△ABC是等边三角形,DAB中点.
 
(1)求证:BC1∥平面A1CD
(2)若四边形BCC1B1是矩形,且CDDA1,求证:三棱柱ABC­A1B1C1是正三棱柱.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,四棱锥中,底面为直角梯形,, 平面,且的中点

(1) 证明:面
(2) 求面与面夹角的余弦值.

查看答案和解析>>

同步练习册答案