精英家教网 > 高中数学 > 题目详情

【题目】已知三棱锥的直观图和三视图如下:

(1)求证: 底面

(2)求三棱锥的体积;

(3)求三棱锥的侧面积.

【答案】(1)详见解析;(2)8;(3) .

【解析】试题分析:(1)证明线面垂直,只需证明直线垂直于平面内的两条相交直线;(2) ∵底面.∴是三棱锥的高,根据三棱锥的体积公式求得;(3)根据边长求得侧面三角形的形状,分别求出面积相加即可.

试题解析:(1)证明:由直观图和三视图知:

,又 平面 平面.

所以: 底面.

(2)∵底面.∴是三棱锥的高

∴三棱锥的体积:

(3)在中:

∴三棱锥的侧面积

点睛: 判定直线和平面垂直的方法:①定义法.②利用判定定理:一条直线和一个平面内的两条相交直线都垂直,则该直线和此平面垂直.③推论:如果在两条平行直线中,有一条垂直于一个平面,那么另一条直线也垂直于这个平面.平面与平面垂直的判定方法:①定义法.②利用判定定理:一个平面过另一个平面的一条垂线,则这两个平面垂直.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知某射击运动员每次击中目标的概率都是0.8.现采用随机模拟的方法估计该运动员射击4次,至多击中1次的概率:先由计算器产生09之间取整数值的随机数,指定0,1表示没有击中目标,2,3,4,5,6,7,8,9表示击中目标;因为射击4次,故以每4个随机数为一组,代表射击4次的结果.经随机模拟产生了20组随机数:

5 727 0 293 7 140 9 857 0 347

4 373 8 636 9 647 1 417 4 698

0 371 6 233 2 616 8 045 6 011

3 661 9 597 7 424 6 710 4 281

据此估计,该射击运动员射击4次至多击中1次的概率为(  )

A. 0.95 B. 0.1

C. 0.15 D. 0.05

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下面给出四种说法:

①用相关指数R2来刻画回归效果,R2越小,说明模型的拟合效果越好;

②命题P:“x0∈R,x02﹣x0﹣1>0”的否定是¬P:“x∈R,x2﹣x﹣1≤0”;

③设随机变量X服从正态分布N(0,1),若P(x>1)=p则P(﹣1<X<0)= ﹣p

④回归直线一定过样本点的中心( ).

其中正确的说法有( )

A. ①②③ B. ①②④ C. ②③④ D. ①②③④

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】【2015高考天津,文20】已知函数

I)求的单调区间;

II)设曲线轴正半轴的交点为P,曲线在点P处的切线方程为,求证:对于任意的正实数,都有;

III)若方程有两个正实数根,求证:.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】从某企业生产的某种产品中抽取500测量这些产品的一项质量指标值由测量结果得如下频率分布直方图:

(1)求这500件产品质量指标值的样本平均数和样本方差s2(同一组中的数据用该组区间的中点值作代表)

(2)由直方图可以认为这种产品的质量指标值Z服从正态分布N(μσ2)其中μ近似为样本平均数σ2近似为样本方差s2.

()利用该正态分布P(187.8<Z<212.2)

()某用户从该企业购买了100件这种产品X表示这100件产品中质量指标值位于区间(187.8212.2)的产品件数.利用()的结果,求E(X).

附: 12.2.ZN(μσ2)P(μσ<Z<μσ)0.682 6P(μ2σ<Z<μ2σ)0.954 4.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某公司试销某种“上海世博会”纪念品,每件按30元销售,可获利50%,设每件纪念品的成本为a元.

(1)试求a的值;

(2)公司在试销过程中进行了市场调查,发现销售量y(件)与每件售价x(元)满足关系y=-10x+800.设每天销售利润为W(元),求每天销售利润W(元)与每件售价x(元)之间的函数解析式;当每件售价为多少时,每天获得的利润最大?最大利润是多少?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数).

(Ⅰ)若曲线上点处的切线过点,求函数的单调减区间;

(Ⅱ)若函数上无零点,求的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】【2017届云南省云南师范大学附属中学高三高考适应性月考(五)文数】已知函数.

(1)若曲线在点处的切线斜率为1,求函数的单调区间;

(2)若时,恒成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】四棱锥PABCD中,底面ABCD是边长为8的菱形,BAD=,若PA=PD=5,平面PAD平面ABCD

(1)求四棱锥PABCD的体积;

(2)求证:ADPB

查看答案和解析>>

同步练习册答案