精英家教网 > 高中数学 > 题目详情

【题目】下列说法中,错误的是( )

A.将一组数据中的每个数据都加上同一个常数后,方差不变

B.对于回归方程,变量每增加一个单位,平均增加5个单位

C.线性回归方程所对应的直线必过点

D.在一个列联表中,由计算得,则有的把握说两个变量有关

本题可以参考独立性检验临界值表

0.50

0.40

0.25

0.15

0.10

0.05

0.025

0.010

0.455

0.708

1.323

2.072

2.706

3.841

5.024

6.635

【答案】B

【解析】

由方差的计算公式可判断A.,回归方程中变量每增加一个单位,平均减少5个单位,可判断B,回归方程过样本中心,可判断C,由独立性检验临界值表,可判断D.

A. 将一组数据中的每个数据都加上同一个常数后,平均数也增加相同的数,由方差公式可知,方差恒不变,故正确.

B. 对于回归方程,变量每增加一个单位,大约平均减少5个单位,故错误.

C. 回归方程必过样本中心,故正确.

D.,的把握说两个变量有关,故正确.

故选:B

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】某连锁餐厅新店开业打算举办一次食品交易会,招待新老顾客试吃项目经理通过查阅最近5次食品交易会参会人数x(万人)与餐厅所用原材料数量y(),得到如下统计表:

第一次

第二次

第三次

第四次

第五次

参会人数(万人)

13

9

8

10

12

原材料(袋)

32

23

18

24

28

1)根据所给5组数据,求出y关于x的线性回归方程

2)已知购买原材料的费用C()与数量()的关系为,投入使用的每袋原材料相应的销售收入为700元,多余的原材料只能无偿返还,据悉本次交易大会大约有13万人参加,根据(1)中求出的线性回归方程,预测餐厅应购买多少袋原材料才能获得最大利润,最大利润是多少?(注:利润L=销售收入-原材料费用)

参考公式:

参考数据:.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,建立平面直角坐标系轴在地平面上,轴垂直于地平面,单位长度为1千米.某炮位于坐标原点.已知炮弹发射后的轨迹在方程表示的曲线上,其中与发射方向有关.炮的射程是指炮弹落地点的横坐标.

1)求炮的最大射程;

2)设在第一象限有一飞行物(忽略其大小),其飞行高度为3.2千米,试问它的横坐标不超过多少时,炮弹可以击中它?请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某公司为了激励业务员的积极性,对业绩在60万到200万的业务员进行奖励奖励方案遵循以下原则:奖金y(单位:万元)随着业绩值x(单位:万元)的增加而增加,且奖金不低于1.5万元同时奖金不超过业绩值的5%.

1)若某业务员的业绩为100万核定可得4万元奖金,若该公司用函数k为常数)作为奖励函数模型,则业绩200万元的业务员可以得到多少奖励?(已知

2)若采用函数作为奖励函数模型试确定最小的正整数a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】7人排成一排,按以下要求分别有多少种排法?

(1)甲、乙两人排在一起;

(2)甲不在左端、乙不在右端;

(3)甲、乙、丙三人中恰好有两人排在一起.(答题要求:先列式,后计算)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)时,求曲线在点处的切线的斜率;

(2)讨论函数的单调性;

(3)当函数有极值时,若对 恒成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知px2-(3+a)x+3a<0,其中a<3;qx2+4x-5>0.

(1)若pq的必要不充分条件,求实数a的取值范围;

(2)若pq的充分不必要条件,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】函数f(x)=x2-(a+2)x+alnx(aR).

1)求函数f(x)的单调区间;

2)若a=4y=f(x)的图象与直线y=m有三个交点,求m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在一次购物抽奖活动中,假设10张奖券中有一等奖奖券1张,可获价值50元的奖品,有二等奖奖券3张,每张可获价值10元的奖品,其余6张没有奖品.

1)顾客甲从10张奖券中任意抽取1张,求中奖次数X的概率分布;

2)顾客乙从10张奖券中任意抽取2张,

①求顾客乙中奖的概率;

②设顾客乙获得的奖品总价值Y元,求Y的概率分布及期望.

查看答案和解析>>

同步练习册答案