精英家教网 > 高中数学 > 题目详情
设集合A={x|2x-1≤3},集合B{x|y=
sinx
x-1
}则A∩B等于(  )
A、(1,2)
B、[1,2]
C、(1,2]
D、[1,2)
考点:交集及其运算
专题:集合
分析:求出A中不等式的解集确定出A,求出B中x的范围确定出B,找出A与B的交集即可.
解答: 解:由A中不等式解得:x≤2,即A=(-∞,2],
由B中y=
sinx
x-1
,得到x-1>0,即x>1,
∴B=(1,+∞),
则A∩B=(1,2],
故选:C.
点评:此题考查了交集及其运算,熟练掌握交集的定义是解本题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x2-1)=loga
x2
2-x2
(a>0且a≠1)
(1)求函数f(x)的解析式,并判断f(x)的奇偶性;
(2)解关于x的方程f(x)=loga
1
x

查看答案和解析>>

科目:高中数学 来源: 题型:

质检部门对某超市甲、乙、丙三种商品进行分层抽样检查,已知甲、乙、丙三种商品的数量比为3:5:2,已知从全部300件乙商品中抽取了20件,则甲商品应抽取
 
件.

查看答案和解析>>

科目:高中数学 来源: 题型:

若∠α的终边经过点P(-
2
3
5
3
),则tanα•cosα=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知cosθ=
70
14
,那么cos(π-θ)=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知集合A={y|y=
|x|
x
(x≠0)},B={x|x2-x-2≤0},则(  )
A、A?BB、B?A
C、A=BD、A∩B=∅

查看答案和解析>>

科目:高中数学 来源: 题型:

椭圆C1
x2
a2
+
y2
b2
=1 (a>b>0)
的左、右焦点分别为F1、F2,右顶点为A,P为椭圆C1上任意一点,且
PF1
PF2
最大值的取值范围是[c2,3c2],其中c=
a2-b2

(1)求椭圆C1的离心率e的取值范围;
(2)设双曲线C2以椭圆C1的焦点为顶点,顶点为焦点,B是双曲线C2在第一象限上任意一点,当e取得最小值时,试问是否存在常数λ(λ>0),使得∠BAF1=λ∠BF1A恒成立?若存在求出λ的值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆E:
x2
a2
+
y2
b2
=1(a>b>0)的离心率为
2
2
,过左焦点倾斜角为45°的直线被椭圆截得的弦长为
4
2
3

(1)求椭圆E的方程;
(2)若动直线l与椭圆E有且只有一个公共点,过点M(1,0)作l的垂线垂足为Q,求点Q的轨迹方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,点D在线段BC上,且
BC
=3
DC
,点O在线段DC上(与点C,D不重合)若
AO
=x
AB
+
y
AC
,则x-y的取值范围是(  )
A、(-1,0)
B、(-1,-
1
3
C、(-2,-1)
D、(-
5
3
,-1)

查看答案和解析>>

同步练习册答案