精英家教网 > 高中数学 > 题目详情
若一个正四棱锥的左视图是一个边长为2的正三角形(如图),则该正四棱锥的体积是(  )
A、1
B、
3
C、
4
3
3
D、2
3
考点:棱柱、棱锥、棱台的体积
专题:空间位置关系与距离
分析:三视图复原的几何体是正四棱锥,求出底面面积,正四棱锥的高,即可求出体积.
解答: 解:如图据条件可得几何体为底面边长为2的正方形,侧面是等腰三角形,
斜高为2,棱锥的高为
22-1
的正四棱锥,
故其体积V=
1
3
×4×
22-1
=
4
3
3

故选:C.
点评:本题是基础题,考查几何体的三视图,几何体的体积的求法,准确判断几何体的形状是解题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知tan(α+β)=2,tan(α-β)=3,则tan2α=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

若点O为△ABC的外心,AB=2m,AC=
2
m
(m>0),∠BAC=120°,且
AO
=x
AB
+y
AC
(x、y为实数),则x+y的最小值是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,已知⊙O的直径AB=3,点C为⊙O上异于A、B的一点,VC⊥平面ABC,且VC=2,点M为线段VB的中点.(Ⅰ)求证:BC⊥平面VAC
(Ⅱ)若AC=1,求直线AM与平面VAC所成角的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=sin(x-
π
6
)+cosx.
(1)求函数f(x)的最小正周期;
(2)若α是第一象限角,且f(α+
π
3
)=
4
5
,求tan(α-
π
4
)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

在平行四边形ABCD中,
BD
=3
ED
,AE的延长线与CD交于点F,若
AC
=
a
BD
=
b
,则
AF
=(  )
A、
1
4
a
+
1
2
b
B、
3
4
a
+
1
4
b
C、
1
2
a
+
1
4
b
D、
1
4
a
+
3
4
b

查看答案和解析>>

科目:高中数学 来源: 题型:

贵州省2014年全省高中男生身高统计调查数据显示:全省100000名男生的身高服从正态分布N(168,16).现从某学校高三年级男生中随机抽取50名测量身高,测量发现被测学生身高全部介于160cm和184cm之间,将测量结果按如下方式分成6组:第1组[160,164),第2组[164,168),…,第6组[180,184],如图是按上述分组方法得到的频率分布直方图.
(1)求这50名男生身高在172cm以上(含172cm)的人数;
(2)求全省高中男生身高排名(从高到低) 前130名中最低身高是多少;
(3)在这50名男生身高在172cm以上(含172cm)的人中任意抽取2人,将该2人中身高排名(从高到低)在全省前130名的人数记为X,求X的数学期望.
参考数据:
若X~N(μ,σ2),则P(μ-σ<X≤μ+σ)=0.6826,
P(μ-2σ<X≤μ+2σ)=0.9544,
P(μ-3σ<X≤μ+3σ)=0.9974.

查看答案和解析>>

科目:高中数学 来源: 题型:

(1)方程2x3-6x2+3=0有几个解?如果有解,全部解的和为多少?
(2)探究方程2x3-6x2+5=0,2x3-6x2+8=0的全部解的和,你由此可以得出什么结论?

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=|lnx|-
1
x+1
的两个零点为x1,x2,则有(  )
A、x1x2<1
B、x1x2=1
C、1<x1x2
2
D、x1x2
2

查看答案和解析>>

同步练习册答案