精英家教网 > 高中数学 > 题目详情
已知函数f(x)=cos(2x+ϕ)满足f(x)≤f(1)对x∈R恒成立,则( )
A.函数f(x+1)一定是偶函数
B.函数f(x-1)一定是偶函数
C.函数f(x+1)一定是奇函数
D.函数f(x-1)一定是奇函数
【答案】分析:依题意,f(1)是最大值,从而可求得φ=2kπ-2,k∈Z,于是可求得f(x+1)=cos2x,继而可得答案.
解答:解:显然f(1)是最大值,
所以f(1)=cos(2+φ)=1,
∴2+φ=2kπ,φ=2kπ-2,k∈Z,
所以f(x)=cos(2x+2kπ-2)=cos(2x-2)
∴f(x+1)=cos(2x+2-2)=cos2x
所以f(x+1)是偶函数.
故选A.
点评:本题考查余弦函数的奇偶性,求得φ=2kπ-2,k∈Z是关键,考查分析与运算能力,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=
|x+
1
x
|,x≠0
0     x=0
,则关于x的方程f2(x)+bf(x)+c=0有5个不同实数解的充要条件是(  )
A、b<-2且c>0
B、b>-2且c<0
C、b<-2且c=0
D、b≥-2且c=0

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
3
sinxcosx-cos2x-
1
2
,x∈R.
(1)求函数f(x)的最小值和最小正周期;
(2)已知△ABC内角A、B、C的对边分别为a、b、c,满足sinB-2sinA=0且c=3,f(C)=0,求a、b的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=lnx-
1
4
x+
3
4x
-1,g(x)=x2-2bx+4,若对任意x1∈(0,2),存在x2∈[1,2],使f(x1)≥g(x2),则实数b的取值范围是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)的图象如图所示,则函数的值域为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=ax2+bx+c(a,b,c∈R)满足f(0)≥2,f(1)≥2,方程f(x)=0在区间(0,1)上有两个实数根,则实数a的取值范围为
(4,+∞)
(4,+∞)

查看答案和解析>>

同步练习册答案