精英家教网 > 高中数学 > 题目详情
已知全集为R,集合A={x|1≤x≤4},B={x|m+1≤x≤2m-1}.
(1)当m=4时,求?R(A∪B);
(2)若B⊆A时,求实数m的取值范围.
分析:(1)将m=4代入集合B中,确定出B,找出既属于A又属于B的部分,求出A与B的并集,找出R中不属于并集的部分,即可确定出所求的集合;
(2)分两种情况考虑:当B为空集时,B为A的子集,此时2m-1小于m+1,求出m的范围;当B不为空集时,列出关于m的不等式组,求出不等式组的解集,即可求出m的范围.
解答:解:(1)当m=4时,B={x|5≤x≤7},
∴A∪B={x|1≤x≤4或5≤x≤7},
∴CR(A∪B)={x|x<1或4<x<5或x>7};
(2)当B=∅时,满足B⊆A,
∴2m-1<m+1,∴m<2;
当m≠∅时,由B⊆A,得到
2m-1≥m+1
2m-1≤4
m+1≥1

解得:2≤m≤
5
2

综上,m的范围为m≤
5
2
点评:此题考查了交、并、补集的混合运算,以及集合关系中参数的取值问题,熟练掌握交、并、补集的定义是解本题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

15、已知全集为R,集合A={x|x2-2x-3≤0},B={x|2x-1<1}
(Ⅰ)求CRA;      (Ⅱ)求A∩(CRB).

查看答案和解析>>

科目:高中数学 来源: 题型:

已知全集为R,集合A={x|log2x<1},B={x|x-1≥0},则A∩(?RB)=(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知全集为R,集合A={x|x2-6x+5>0},B={x|x2-3ax+2a2<0}
(1)当a=3时,求B∩CRA;
(2)当A∪B=A时,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知全集为R,集合A={x|-2≤x≤1},B={y|y=2x+1,x∈A},C={x|0≤x≤4},求(CRA)∩(B∪C).

查看答案和解析>>

科目:高中数学 来源: 题型:

已知全集为R,集合A={x||x-1|<4},集合B={x|x2-4x+3≥0},集合C={x|
x-4x-1
<0}
,求CR(A∩B∩C).

查看答案和解析>>

同步练习册答案