精英家教网 > 高中数学 > 题目详情

【题目】在学习过程中,我们通常遇到相似的问题.

(1)已知动点为圆 外一点,过引圆的两条切线. 为切点,若,求动点的轨迹方程;

(2)若动点为椭圆 外一点,过引椭圆的两条切线. 为切点,若,猜想动点的轨迹是什么,请给出证明并求出动点的轨迹方程.

【答案】(1) (2) 动点的轨迹是一个圆,点的轨迹方程为

【解析】试题分析:(1)由切线的性质及可知,四边形OAPB为正方形,所以点P在以O为圆心,|OP|长为半径的圆上,进而可得动点P的轨迹方程;

(2)设两切线为l1l2,分当l1与x轴不垂直且不平行时,和当l1与x轴垂直或平行时两种情况,结合,可得动点Q的轨迹方程;

试题解析:

(1)由切线的性质及可知,四边形为正方形

所以点在以为圆心, 长为半径的圆上,且

进而动点的轨迹方程为

(2)动点的轨迹是一个圆

设两切线

①当轴不垂直且不平行时,设点的坐标为,则

的斜率为,则 的斜率为

的方程为,联立

因为直线与椭圆相切,所以,得

化简,

进而

所以

所以是方程的一个根.

同理是方程的另一个根.

所以,得,其中

②当轴或轴时,对应轴或轴,可知,满足上式,

综上知:点的轨迹方程为

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】某射击运动员射击1次,命中10环、9环、8环、7环(假设命中的环数都为整数)的概率分别为0.20,0.22,0.25,0.28. 计算该运动员在1次射击中:

(1)至少命中7环的概率;

(2)命中不足8环的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】本小题满分12分ABC中,角A,B,C所对的边分别为a,b,c已知a=3,cos A,B=A+

1b的值;

2ABC的面积

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)= ,其中m>0,若存在实数b,使得关于x的方程f(x)=b有三个不同的根,则m的取值范围是

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设f(x)=2 sin(π﹣x)sinx﹣(sinx﹣cosx)2
(1)求f(x)的单调递增区间;
(2)把y=f(x)的图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),再把得到的图象向左平移 个单位,得到函数y=g(x)的图象,求g( )的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设f(x)=xlnx﹣ax2+(2a﹣1)x,a∈R.
(1)令g(x)=f′(x),求g(x)的单调区间;
(2)已知f(x)在x=1处取得极大值,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某几何体的三视图如图所示(单位:cm),则该几何体的表面积是cm2 , 体积是cm3

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知m、n是不同的直线,α、β是不重合的平面,则下列命题正确的是

A. 若α∥β,mα,nβ,则m∥n

B. 若mα,nα,m∥β,n∥β,则α∥β

C. 若aα,bβ,a∥b,则α∥β

D. m、n是两异面直线,若m∥α,m∥β,且n∥α,n∥β,则α∥β

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】分别为椭圆的左右两个焦点.

(1)若椭圆上的点两点的距离之和等于4,写出椭圆的方程和焦点坐标;

(2)设点是(1)中所得椭圆上的动点,求线段的中点的轨迹方程;

(3)已知椭圆具有性质:如果是椭圆上关于原点对称的两个点,点是椭圆上任意一点,当直线的斜率都存在,并记为时,那么之积是与点位置无关的定值,请给予证明.

查看答案和解析>>

同步练习册答案