精英家教网 > 高中数学 > 题目详情

【题目】如图,在四棱锥P﹣ABCD中,底面ABCD是平行四边形,∠BCD=135°,侧面PAB⊥底面ABCD∠BAP=90°AB=AC=PA=2EF分别为BCAD的中点,点M在线段PD上.

)求证:EF⊥平面PAC

)若MPD的中点,求证:ME∥平面PAB

)如果直线ME与平面PBC所成的角和直线ME与平面ABCD所成的角相等,求的值.

【答案】)见解析;()见解析;(

【解析】

试题分析:由平行四边形的性质可得,即,由面面垂直的性质得出平面,故,从而平面

为原点建立空间直角坐标系,设,求出平面,平面的法向量以及的坐标,根据线面角相等列方程求解即可得到答案

解析:(1)证明:在平行四边形中,因为

所以.由分别为的中点,得, 所以

因为侧面底面,且,所以底面

又因为底面,所以

又因为平面平面,所以平面

(2)解:因为底面,所以两两

垂直,以分别为,建立空间直角坐标系,则

所以

,则

所以,易得平面

的法向量

设平面的法向量为,由, 得

因为直线与平面所成的角和此直线与平面所成的角相等,

所以,即,所以

解得,或(舍). 综上所得:

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】某社区为了解居民参加体育锻炼的情况,从该社区随机抽取了18名男性居民和12名女性居民,对他们参加体育锻炼的情况进行问卷调查.现按是否参加体育锻炼将居民分成两类:甲类(不参加体育锻炼)、乙类(参加体育锻炼),结果如下表:

甲类

乙类

男性居民

3

15

女性居民

6

6

(Ⅰ)根据上表中的统计数据,完成下面的列联表;

男性居民

女性居民

总计

不参加体育锻炼

参加体育锻炼

总计

(Ⅱ)通过计算判断是否有90%的把握认为参加体育锻炼与否与性别有关?

附:,其中.

0.10

0.05

0.01

2.706

3.841

6.635

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知某超市为顾客提供四种结账方式:现金、支付宝、微信、银联卡.若顾客甲没有银联卡,顾客乙只带了现金,顾客丙、丁用哪种方式结账都可以,这四名顾客购物后,恰好用了其中的三种结账方式,那么他们结账方式的可能情况有( )种

A. 19B. 7C. 26D. 12

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某项选拔共有四轮考核,每轮设有一个问题,能正确回答问题者进入下一轮考核,否则即被淘汰,.已知某选手能正确回答第一、二、三、四轮的问题的概率分别为,且各轮问题能否正确回答互不影响.

1)求该选手进入第四轮才被淘汰的概率;

2)求该选手至多进入第三轮考核的概率;

3)求该选手回答过四个问题的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知双曲线,双曲线的左、右焦点分别为F1,F2,M是双曲线C2的一条渐近线上的点,且OM⊥MF2,O为坐标原点,若,且双曲线C1,C2的离心率相同,则双曲线C2的实轴长是 ( )

A. 32 B. 4 C. 8 D. 16

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知关于的不等式.

1)不等式的解集为,求实数的值;

2)在(1)的条件下,求不等式的解集;

3)解关于的不等式.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直角坐标系中,曲线的参数方程为 (为参数)。在以坐标原点为极点轴正半轴为极轴的极坐标系中,曲线

(1)写出曲线的普通方程

(2)过曲线的左焦点且倾斜角为的直线交曲线两点

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某地区上年度电价为/),年用电量为.本年度该地政府实行惠民政策,要求电力部门让利给用户,将电价下调到/)至/)之间,而用户的期望电价为/).经测算,下调电价后新增用电量和实际电价与用户的期望电价的差成反比(比例系数为).该地区的电力成本价为/).

1)写出本年度电价下调后电力部门的收益(单位:元)关于实际电价(单位:元/)的函数解析式;(收益实际用电量(实际电价成本价))

2)设,当电价最低定为多少时,可保证电力部门的收益比上年至多减少

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,直线的的参数方程为(其中为参数),以坐标原点为极点,轴的正半轴为极轴的极坐标系中,点的极坐标为,直线经过点曲线的极坐标方程为.

(1)求直线的普通方程与曲线的直角坐标方程

(2)过点作直线的垂线交曲线两点(轴上方),求的值.

查看答案和解析>>

同步练习册答案