【题目】已知曲线C上任意一点M满足|MF1|+|MF2|=4,其中F1(,F2(,
(Ⅰ)求曲线C的方程;
(Ⅱ)已知直线与曲线C交于A,B两点,是否存在实数k使得以线段AB为直径的圆恰好经过坐标原点O?若存在,求出k的值;若不存在,请说明理由.
【答案】(Ⅰ)(Ⅱ)
【解析】
试题分析:(Ⅰ)利用曲线C上任意一点M满足|MF1|+|MF2|=4,其中,求出几何量,即可得到椭圆的方程;(Ⅱ)直线方程代入椭圆方程,利用韦达定理,及,即可求得结论
试题解析:(Ⅰ)设椭圆的焦半距为c,则由题设,得a=2,c=,
所以b2=a2﹣c2=4﹣3=1,
故所求椭圆C的方程为.
(Ⅱ)存在实数k使得以线段AB为直径的圆恰好经过坐标原点O.
理由如下:
设点A(x1,y1),B(x2,y2),
将直线方程代入整理得
,因为以线段AB为直径的圆恰好经过坐标原点O
所以,即.
又,
于是,解得,
经检验知:此时(*)式的△>0,符合题意.
所以当时,以线段AB为直径的圆恰好经过坐标原点O.
科目:高中数学 来源: 题型:
【题目】将全班同学按学号编号,制作相应的卡片号签,放入同一个箱子里均匀搅拌,从中抽出15个号签,就相应的15名学生对看足球比赛的喜爱程度(很喜爱、喜爱、一般、不喜爱、很不喜爱)进行调查,使用的是___法.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在四棱锥中, 平面平面,.
(1)求证: 平面;
(2)求直线与平面所成角的正弦值;
(3)在棱上是否存在点,使得平面?若存在, 求的值;若不存在, 说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】100件产品中有10件次品,从中任取7件,至少有5件次品的概率可以看成三个互斥事件的概率和,则这三个互斥事件分别是_____,_____和_____.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】假设某地有男驾驶员300名,女驾驶员200名.为了研究驾驶员日平均开车速度是否与性别有关,现采用分层抽样的方法,从中抽取了100名驾驶员,先统计了他们某月的日平均开车速度,然后按“男驾驶员”和“女驾驶员”分为两组,再将两组驾驶员的日平均开车速度(千米/小时)分成5组:[50,60),[60,70),[70,80),[80,90),[90,100)分别加以统计,得到如图所示的频率分布直方图.
(Ⅰ)从样本中日平均开车速度不足60(千米/小时)的驾驶员中随机抽取2人,求至少抽到一名“女驾驶员”的概率.
(Ⅱ)如果一般认为日平均开车速度不少于80(千米/小时)者为“危险驾驶”.请你根据已知条件完成2×2联表,并判断是否有90%的把握认为“危险驾驶与驾驶员性别组有关”?
附:
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某学校研究性学习小组对该校高三学生视力情况进行调查,在高三的全体1000名学生中随机抽取了若干名学生的体检表,并得到 如下直方图:
(Ⅰ)若直方图中前三组的频率成等比数列,后四组的频率成等差数列,试估计全年级视力在5.0以下的人数;
(Ⅱ)学习小组成员发现,学习成绩突出的学生,近视的比较多,为了研究学生的视力与学习成绩是否有关系,对年纪名次在1~50名和951~1000名的学生进行了调查,得到如下数据:
根据表中的数据,能否在犯错的概率不超过0.05的前提下认为视力与学习成绩有关系?
(Ⅲ)在(Ⅱ)中调查的100名学生中,在不近视的学生中按照成绩是否在前50名分层抽样抽取了9人,
进一步调查他们良好的护眼习惯,并且在这9人中任取3人,记名次在1~50名的学生人数为,求
的分布列和数学期望.
附:
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知正项数列的前项和为,数列是首项为,公比为的等比数列.
(1)求证:数列是等差数列.
(2)若的前项和.
(3)在(2)条件下,是否存在常数,使得数列为等比数列?若存在,试求出;若不存在,说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com