ÒÑÖªº¯Êýf(x)=
1
2
x2+(a-3)x+lnx
£®
£¨¢ñ£©Èôº¯Êýf£¨x£©ÊǶ¨ÒåÓòÉϵĵ¥µ÷º¯Êý£¬ÇóʵÊýaµÄ×îСֵ£»
£¨¢ò£©·½³Ìf(x)=(
1
2
-a)x2+(a-2)x+2lnx
£®ÓÐÁ½¸ö²»Í¬µÄʵÊý½â£¬ÇóʵÊýaµÄÈ¡Öµ·¶Î§£»
£¨¢ó£©ÔÚº¯Êýf£¨x£©µÄͼÏóÉÏÊÇ·ñ´æÔÚ²»Í¬Á½µãA£¨x1£¬y1£©£¬B£¨x2£¬y2£©£¬Ï߶ÎABµÄÖеãµÄºá×ø±êΪx0£¬ÓÐf¡ä£¨x0£©=
y1-y2
x1-x2
³ÉÁ¢£¿Èô´æÔÚ£¬ÇëÇó³öx0µÄÖµ£»Èô²»´æÔÚ£¬Çë˵Ã÷ÀíÓÉ£®
·ÖÎö£º£¨I£©Çó³öµ¼º¯Êý£¬Áîµ¼º¯Êý´óÓÚµÈÓÚ0ºã³ÉÁ¢»òСÓÚµÈÓÚ0ºã³ÉÁ¢£¬·ÖÀë³öa£¬ÀûÓûù±¾²»µÈʽÇó³öaµÄ·¶Î§£¬´Ó¶øÇó³öaµÄ×îСֵ£®
£¨¢ò£©ÓÉf(x)=(
1
2
-a)x
2
+(a-2)x+2lnx
=0£¬µÃa=
lnx+x
x2
£¬Áîr£¨x£©=
lnx+x
x2
£¬ÀûÓõ¼ÊýÑо¿Æäµ¥µ÷ÐÔ¼°×îÖµ£¬´Ó¶øµÃ³öҪʹy=
lnx+x
x2
Óëy=aÓÐÁ½¸ö²»Í¬µÄ½»µã£¬Çó³öʵÊýaµÄÈ¡Öµ·¶Î§£»
£¨III£©ÀûÓÃÁ½µãÁ¬ÏßµÄбÂʹ«Ê½Çó³ök²¢ÇÒ»¯¼òk£¬Çó³öf¡ä£¨x0£©Áгö·½³Ì£¬Í¨¹ý»»Ôª¹¹Ôìк¯Êý£¬Í¨¹ýµ¼ÊýÅжϳöº¯ÊýµÄµ¥µ÷ÐÔ£¬Çó³ö×îÖµ£¬µÃµ½Ã¬¶Ü£®
½â´ð£º½â£º£¨¢ñ£©f/(x)=x+a-3+
1
x
(x£¾0)
£®£¨2·Ö£©
Èôº¯Êýf£¨x£©ÔÚ£¨0£¬+¡Þ£©ÉϵÝÔö£¬
Ôòf¡ä£¨x£©¡Ý0¶Ôx£¾0ºã³ÉÁ¢£¬¼´a¡Ý-(x+
1
x
)+3
¶Ôx£¾0ºã³ÉÁ¢£¬
¶øµ±x£¾0ʱ£¬-(x+
1
x
)+3¡Ü-2+3=1
£®
¡àa¡Ý1£®
Èôº¯Êýf£¨x£©ÔÚ£¨0£¬+¡Þ£©Éϵݼõ£¬
Ôòf¡ä£¨x£©¡Ü0¶Ôx£¾0ºã³ÉÁ¢£¬¼´a¡Ü-(x+
1
x
)+3
¶Ôx£¾0ºã³ÉÁ¢£¬
ÕâÊDz»¿ÉÄܵģ®
×ÛÉÏ£¬a¡Ý1£®
aµÄ×îСֵΪ1£®£¨6·Ö£©
£¨¢ò£©ÓÉf(x)=(
1
2
-a)x
2
+(a-2)x+2lnx
=0£¬
µÃ£º(a-
1
2
)x
2
+(2-a)x=2lnx
£¬
¼´£ºa=
lnx+x
x2
£¬Áîr£¨x£©=
lnx+x
x2
£¬r¡ä£¨x£©=
(
1
x
+1)x2-2x(lnx+x) 
x4
=
1-x-2lnx
x3

µÃ1-x-2lnx=0µÄ¸ùΪ1£¬
ËùÒÔµ±0£¼x£¼1ʱ£¬r¡ä£¨x£©£¾0£¬Ôòr£¨x£©µ¥µ÷µÝÔö£¬
µ±x£¾1ʱ£¬r¡ä£¨x£©£¼0£¬Ôòr£¨x£©µ¥µ÷µÝ¼õ£¬
ËùÒÔr£¨x£©ÔÚx=1´¦È¡µ½×î´óÖµr£¨1£©=1£¬
ÓÖx¡ú0ʱr£¨x£©¡ú0£¬ÓÖx¡ú+¡Þʱ£¬r£¨x£©¡ú0£¬
ËùÒÔҪʹy=
lnx+x
x2
Óëy=aÓÐÁ½¸ö²»Í¬µÄ½»µã£¬ÔòÓР0£¼a£¼1                                       ¡­8·Ö
£¨III£©¼ÙÉè´æÔÚ£¬²»·ÁÉè0£¼x1£¼x2.k=
f(x1)-f(x2)
x1-x2
=
1
2
x
2
1
+(a-3)x1+lnx1-
1
2
x
2
2
-(a-3)x2-lnx2
x1-x2
=x0+(a-3)+
ln
x1
x2
x1-x2
£®£¨9·Ö£©
f/(x0)=x0+(a-3)+
1
x0
£®
Èôk=f¡ä£¨x0£©£¬Ôò
ln
x1
x2
x1-x2
=
1
x0
£¬¼´
ln
x1
x2
x1-x2
=
2
x1+x2
£¬¼´ln
x1
x2
=
2
x1
x2
-2
x1
x2
+ 1
£®£¨*£©£¨12·Ö£©
Áît=
x1
x2
£¬u(t)=lnt-
2t-2
t+1
£¨0£¼t£¼1£©£¬
Ôòu¡ä(t)=
(t-1)2
t(t+1)2
£¾0£®¡àu£¨t£©ÔÚ0£¼t£¼1ÉÏÊÇÔöº¯Êý£¬
¡àu£¨t£©£¼u£¨1£©=0£¬
¡à£¨*£©Ê½²»³ÉÁ¢£¬Óë¼ÙÉèì¶Ü£®¡àk¡Ùf¡ä£¨x0£©£®
Òò´Ë£¬Âú×ãÌõ¼þµÄx0²»´æÔÚ£®£¨16·Ö£©
µãÆÀ£º±¾Ð¡ÌâÖ÷Òª¿¼²éÀûÓõ¼ÊýÑо¿º¯ÊýµÄµ¥µ÷ÐÔ¡¢ÀûÓõ¼ÊýÇó±ÕÇø¼äÉϺ¯ÊýµÄ×îÖµ¡¢´æÔÚÐÔÎÊÌâµÈ»ù´¡ÖªÊ¶£¬¿¼²éÔËËãÇó½âÄÜÁ¦£¬¿¼²é»¯¹éÓëת»¯Ë¼Ï룮½â¾öÊÇ·ñ´æÔÚÕâÖÖ̽Ë÷ÐÔµÄÎÊÌ⣬³£¼ÙÉè´æÔÚÈ¥Çó£¬ÈôÇó³öÔò´æÔÚ£¬ÈôÇó²»³öÔò²»´æÔÚ£®
Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

£¨1£©¡¢ÒÑÖªº¯Êýf(x)=
1+
2
cos(2x-
¦Ð
4
)
sin(x+
¦Ð
2
)
£®Èô½Ç¦ÁÔÚµÚÒ»ÏóÏÞÇÒcos¦Á=
3
5
£¬Çóf(¦Á)
£®
£¨2£©º¯Êýf(x)=2cos2x-2
3
sinxcosx
µÄͼÏó°´ÏòÁ¿
m
=(
¦Ð
6
£¬-1)
ƽÒƺ󣬵õ½Ò»¸öº¯Êýg£¨x£©µÄͼÏó£¬Çóg£¨x£©µÄ½âÎöʽ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÒÑÖªº¯Êýf(x)=(1-
a
x
)ex
£¬ÈôͬʱÂú×ãÌõ¼þ£º
¢Ù?x0¡Ê£¨0£¬+¡Þ£©£¬x0Ϊf£¨x£©µÄÒ»¸ö¼«´óÖµµã£»
¢Ú?x¡Ê£¨8£¬+¡Þ£©£¬f£¨x£©£¾0£®
ÔòʵÊýaµÄÈ¡Öµ·¶Î§ÊÇ£¨¡¡¡¡£©

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÒÑÖªº¯Êýf(x)=
1+lnx
x
£®
£¨1£©Èç¹ûa£¾0£¬º¯ÊýÔÚÇø¼ä(a£¬a+
1
2
)
ÉÏ´æÔÚ¼«Öµ£¬ÇóʵÊýaµÄÈ¡Öµ·¶Î§£»
£¨2£©µ±x¡Ý1ʱ£¬²»µÈʽf(x)¡Ý
k
x+1
ºã³ÉÁ¢£¬ÇóʵÊýkµÄÈ¡Öµ·¶Î§£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÒÑÖªº¯Êýf(x)=
1+
1
x
£¬(x£¾1)
x2+1£¬(-1¡Üx¡Ü1)
2x+3£¬(x£¼-1)
£®
£¨1£©Çóf(
1
2
-1
)
Óëf£¨f£¨1£©£©µÄÖµ£»
£¨2£©Èôf(a)=
3
2
£¬ÇóaµÄÖµ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

¶¨ÒåÔÚDÉϵĺ¯Êýf£¨x£©Èç¹ûÂú×㣺¶ÔÈÎÒâx¡ÊD£¬´æÔÚ³£ÊýM£¾0£¬¶¼ÓÐ|f£¨x£©|¡ÜM³ÉÁ¢£¬Ôò³Æf£¨x£©ÊÇDÉϵÄÓн纯Êý£¬ÆäÖÐM³ÆΪº¯Êýf£¨x£©µÄÉϽ磮ÒÑÖªº¯Êýf(x)=
1-m•2x1+m•2x
£®
£¨1£©m=1ʱ£¬Çóº¯Êýf£¨x£©ÔÚ£¨-¡Þ£¬0£©ÉϵÄÖµÓò£¬²¢ÅжÏf£¨x£©ÔÚ£¨-¡Þ£¬0£©ÉÏÊÇ·ñΪÓн纯Êý£¬Çë˵Ã÷ÀíÓÉ£»
£¨2£©Èôº¯Êýf£¨x£©ÔÚ[0£¬1]ÉÏÊÇÒÔ3ΪÉϽçµÄÓн纯Êý£¬ÇómµÄÈ¡Öµ·¶Î§£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸