精英家教网 > 高中数学 > 题目详情

【题目】已知等差数列{an}的前n项和为Sn , 且a1=10,S5≥S6 , 下列四个命题中,假命题是(
A.公差d的最大值为﹣2
B.S7<0
C.记Sn的最大值为K,K的最大值为30
D.a2016>a2017

【答案】B
【解析】解:设公差为d,由a1=10,S5≥S6 , ∴5×10+10d≥6×10+15d,
解得d≤﹣2,
∴S7=7×10+21d≤70﹣2×21=28,
∵an=a1+(n﹣1)d=10+(n﹣1)d≥0,解得n≤﹣ +1,
an+1=a1+nd=10+nd≤0,解得n≥﹣
∴﹣ ≤n≤﹣ +1,
当d=﹣2时,
∴5≤n≤6,
当n=5时,有最大值,此时k=5×10+10×(﹣2)=30,
当n=6时,有最大值,此时k=6×10+15×(﹣2)=30,
∵该数列为递减数列,
∴a2016>a2017
故选:B
【考点精析】关于本题考查的等差数列的前n项和公式,需要了解前n项和公式:才能得出正确答案.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】阅读如图的程序框图,运行相应的程序,则输出的值为(
A.3
B.4
C.6
D.7

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=cos(2x+φ),|φ|≤ ,若f( ﹣x)=﹣f(x),则要得到y=sin2x的图象只需将y=f(x)的图象(
A.向左平移 个单位
B.向右平移 个单位
C.向左平移 个单位
D.向右平移 个单位

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=ax+x2﹣xlna﹣b(b∈R,a>0且a≠1),e是自然对数的底数.
(1)讨论函数f(x)在(0,+∞)上的单调性;
(2)当a>1时,若存在x1 , x2∈[﹣1,1],使得|f(x1)﹣f(x2)|≥e﹣1,求实数a的取值范围.(参考公式:(ax)′=axlna)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知点H(﹣1,0),点P在y轴上,动点M满足PH⊥PM,且直线PM与x轴交于点Q,Q是线段PM的中点.
(1)求动点M的轨迹E的方程;
(2)若点F是曲线E的焦点,过F的两条直线l1 , l2关于x轴对称,且l1交曲线E于A、C两点,l2交曲线E于B、D两点,A、D在第一象限,若四边形ABCD的面积等于 ,求直线l1 , l2的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列{an},a2=2,an+an+1=3n,n∈N* , 则a2+a4+a6+a8+a10+a12=

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆C: =1(a>b>0),椭圆C的右焦点F的坐标为 ,短轴长为2.
(I)求椭圆C的方程;
(II)若点P为直线x=4上的一个动点,A,B为椭圆的左、右顶点,直线AP,BP分别与椭圆C的另一个交点分别为M,N,求证:直线MN恒过点E(1,0).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列{an}是首项 ,公比 的等比数列.设 (n∈N*). (Ⅰ)求证:数列{bn}为等差数列;
(Ⅱ)设cn=an+b2n , 求数列{cn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数f(x)=sin(ωx+φ)+cos(ωx+φ)(ω>0,|φ|< )的最小正周期为π,且f(﹣x)=f(x),则(
A.f(x)在(0, )单调递增
B.f(x)在( )单调递减
C.f(x)在( )单调递增
D.f(x)在( ,π)单调递增

查看答案和解析>>

同步练习册答案