精英家教网 > 高中数学 > 题目详情

【题目】已知拋物线的焦点为是抛物线上横坐标为4且位于轴上方的点,点到抛物线准线的距离等于5.过点垂直于轴,垂足为的中点为.

1)求抛物线方程;

2)过点,垂足为,求点的坐标;

3)以点为圆心,为半径作圆,当轴上一动点时,讨论直线与圆的位置关系.

【答案】1;(2;(3)答案不唯一,具体见解析.

【解析】

1)求得抛物线的准线方程,结合抛物线的定义,得到,求得的值,即可求得抛物线方程;

2)根据题意,求得的坐标,得出的方程,联立方程组,即可求解;

3)得到圆的圆心是点(02),半径为2,分类讨论,即可求得直线和圆的位置关系,得到答案.

1)由题意,抛物线的准线为

可得,解得,所以抛物线方程为.

2)令,代入抛物线的方程,解得

因为点的上方,可得,所以点的坐标是(44),

由题意,得

又因为,可得,又由,所以

所以的方程为的方程为

解方程组,解得,即点的坐标为.

3)由题意,得圆的圆心是点(02),半径为2

时,直线的方程为,此时,直线与圆相离;

时,直线的方程为,即为

圆心到直线的距离

,解得

所以当时,直线相离;当时,直线与圆相切;当时,直线与圆相交.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】某大学宣传部组织了这样一个游戏项目:甲箱子里面有3个红球,2个白球,乙箱子里面有1个红球,2个白球,这些球除了颜色以外,完全相同。每次游戏需要从这两个箱子里面各随机摸出两个球.

(1)设在一次游戏中,摸出红球的个数为,求分布列.

(2)若在一次游戏中,摸出的红球不少于2个,则获奖.

①求一次游戏中,获奖的概率;

②若每次游戏结束后,将球放回原来的箱子,设4次游戏中获奖次数为,求的数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】现有6人参加某娱乐活动,该活动有甲、乙两个游戏可供参加者选择,为增加趣味性,主办方制作了一款电脑软件:按下电脑键盘“”键则会出现模拟抛两枚质地均匀的骰子的画面,若干秒后在屏幕上出现两个点数,并在屏幕的下方计算出的值.主办方现规定:每个人去按“”键,当显示出来的小于时则参加甲游戏,否则参加乙游戏.

(1)求这6个人中恰有2人参加甲游戏的概率;

(2)用分别表示这6个人中去参加甲,乙游戏的人数,记,求随机变量的分布列与数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,四棱锥中,是正三角形,四边形是菱形,点的中点.

(I)求证:// 平面

(II)若平面平面 求直线与平面所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,为保护河上古桥OA,规划建一座新桥BC,同时设立一个圆形保护区.规划要求:新桥BC与河岸AB垂直;保护区的边界为圆心M在线段OA上并与BC相切的圆,且古桥两端OA到该圆上任意一点的距离均不少于80 m.经测量,点A位于点O正北方向60 m,C位于点O正东方向170 m(OC为河岸),tanBCO=.

1)求新桥BC的长;

2)当OM多长时,圆形保护区的面积最大?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,对于直线和点,记,若,则称点,被直线l分隔,若曲线C与直线l没有公共点,且曲线C上存在点,被直线l分隔,则称直线l为曲线C的一条分隔线.

1)求证:点被直线分隔;

2)若直线是曲线的分隔线,求实数的取值范围;

3)动点M到点的距离与到y轴的距离之积为1,设点M的轨迹为E,求E的方程,并证明y轴为曲线E的分隔线.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆)的左、右焦点分别为,过点的直线两点,的周长为的离心率

(Ⅰ)求的方程;

(Ⅱ)设点,过点轴的垂线,试判断直线与直线的交点是否恒在一条定直线上?若是,求该定直线的方程;否则,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,若曲线上始终存在两点,使得,且的中点在轴上,则正实数的取值范围为(

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】过抛物线的焦点的直线交抛物线于两点,且直线的斜率分别为,则中有几个是定值?反过来是否成立?

查看答案和解析>>

同步练习册答案