【题目】已知函数f(x)=loga(x+a)(a>0且a≠1)的图象过点(﹣1,0),g(x)=f(x)+f(﹣x).
(Ⅰ)求函数g(x)的定义域;
(Ⅱ)写出函数g(x)的单调区间,并求g(x)的最大值.
【答案】(Ⅰ)(﹣2,2),(Ⅱ)单调增区间(﹣2,0),单调递减区间(0,2),最大值2
【解析】
(Ⅰ)根据函数过点(﹣1,0),计算得到a=2,代入得到g(x)=f(x)+f(﹣x)
,定义域满足得到答案.
(Ⅱ)利用复合函数的单调性到单调增区间(﹣2,0),单调递减区间(0,2),再计算最值得到答案.
(Ⅰ)f(x)=loga(x+a)(a>0且a≠1)的图象过点(﹣1,0),∴a﹣1=1即a=2,
∴g(x)=f(x)+f(﹣x)=log2(x+2)+log2(﹣x+2)
由题意可得,,即﹣2<x<2
∴函数g(x)的定义域(﹣2,2)
(Ⅱ)
根据复合函数的单调性可知g(x)的单调增区间(﹣2,0),单调递减区间(0,2)
当x=0时,g(x)取得最大值2.
科目:高中数学 来源: 题型:
【题目】已知正六棱锥的底面边长为,高为.现从该棱锥的个顶点中随机选取个点构成三角形,设随机变量表示所得三角形的面积.
(1)求概率的值;
(2)求的分布列,并求其数学期望.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】随着西部大开发的深入,西南地区的大学越来越受到广大考生的青睐,下表是西南地区某大学近五年的录取平均分与省一本线对比表:
年份 | 2014 | 2015 | 2016 | 2017 | 2018 |
年份代码 | 1 | 2 | 3 | 4 | 5 |
省一本线 | 505 | 500 | 525 | 500 | 530 |
录取平均分533 | 534 | 566 | 547 | 580 | |
录取平均分与省一本线分差y | 28 | 34 | 41 | 47 | 50 |
(1)根据上表数据可知,y与t之间存在线性相关关系,求y关于t的线性回归方程;
(2)据以往数据可知,该大学每年的录取分数X服从正态分布,其中为当年该大学的录取平均分,假设2019年该省一本线为520分,李华2019年高考考了569分,他很喜欢这所大学,想第一志愿填报,请利用概率与统计知识,给李华一个合理的建议.(第一志愿录取可能性低于,则建议谨慎报考)
参考公式:,.
参考数据:,.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】选修4-4:坐标系与参数方程
在直角坐标系中,曲线过点,其参数方程为(为参数).以坐标原点为极点,轴的非负半轴为极轴,建立极坐标系,曲线的极坐标方程为.
(1)求的普通方程和的直角坐标方程;
(2)若与交于两点,求的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图所示,在直角坐标系中,曲线C由以原点为圆心,半径为2的半圆和中心在原点,焦点在x轴上的半椭圆构成,以坐标原点为极点,x轴正半轴为极轴建立极坐标系.
(1)写出曲线C的极坐标方程;
(2)已知射线与曲线C交于点M,点N为曲线C上的动点,求面积的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图所示,在直角坐标系中,曲线C由以原点为圆心,半径为2的半圆和中心在原点,焦点在x轴上的半椭圆构成,以坐标原点为极点,x轴正半轴为极轴建立极坐标系.
(1)写出曲线C的极坐标方程;
(2)已知射线与曲线C交于点M,点N为曲线C上的动点,求面积的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】十九大提出,坚决打赢脱贫攻坚战,某帮扶单位为帮助定点扶贫村真脱贫,坚持扶贫同扶智相结合,帮助贫困村种植蜜柚,并利用电商进行销售,为了更好地销售,现从该村的蜜柚树上随机摘下了100个蜜柚进行测重,其质量分别在, , , , , (单位:克)中,其频率分布直方图如图所示.
(1)按分层抽样的方法从质量落在, 的蜜柚中抽取5个,再从这5个蜜柚中随机抽取2个,求这2个蜜柚质量均小于2000克的概率;
(2)以各组数据的中间数代表这组数据的平均水平,以频率代表概率,已知该贫困村的蜜柚树上大约还有5000个蜜柚等待出售,某电商提出两种收购方案:
A.所有蜜柚均以40元/千克收购;
B.低于2250克的蜜柚以60元/个收购,高于或等于2250克的以80元/个收购.
请你通过计算为该村选择收益最好的方案.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图所示,为山脚两侧共线的3点,在山顶处测得3点的俯角分别为,计划沿直线开通穿山隧道,为求出隧道的长度,你认为还需要直接测量出中哪些线段的长度?根据条件,并把你认为需要测量的线段长度作为已知量,写出计算隧道长度的运算步骤.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com