精英家教网 > 高中数学 > 题目详情

已知函数数学公式
(1)当a=0时,求证函数f(x)在它的定义域上单调递减
(2)是否存在实数a使得区间[-1,1]上一切x都满足f(x)≤数学公式,若存在,求实数a的值;若不存在,说明理由.

解:(1)a=0时,,定义域为(-∞,1];

∴函数f(x)在它的定义域上单调递减
(2)假设存在实数a使得区间[-1,1]上一切x都满足f(x)≤

即-1≤ax2-(1+a)x≤2在区间[-1,1]上恒成立
∴-1≤2a+1≤2

分析:(1)当a=0时,利用被开方数大于等于0 可求函数的定义域,利用导数小于0,可证在它的定义域上单调递减
(2)假设存在实数a使得区间[-1,1]上一切x都满足f(x)≤,两边平方即可求得.
点评:本题以函数为载体,考查函数的单调性,考查存在性问题,关键是等价转化.
练习册系列答案
相关习题

科目:高中数学 来源:2015届陕西省高一上学期期中考试数学试卷(解析版) 题型:解答题

(14分)已知函数

(1) 当a= -1时,求函数的最大值和最小值;

(2) 求实数a的取值范围,使y=f(x)在区间上是单调函数

(3) 求函数f(x)的最小值g(a),并求g(a)的最大值.

 

查看答案和解析>>

科目:高中数学 来源:2011-2012学年浙江省金华十校高三上学期期末考试文科数学(解析版) 题型:解答题

(本小题满分15分)

已知函数

(1)当a=1时,求函数在点(1,-2)处的切线方程;

(2)若函数上的图象与直线总有两个不同交点,求实数a的取值范围。

 

查看答案和解析>>

科目:高中数学 来源:2011-2012学年广东省高三第一次模拟考试文科数学 题型:解答题

(本小题满分14分)

已知函数

(1)当a=1时,求在区间[1,e]上的最大值和最小值;

(2)若在区间上,函数的图象恒在直线下方,求a的取值范围。

 

查看答案和解析>>

科目:高中数学 来源:2010届江西省高三年级数学热身卷(文科) 题型:解答题

(12分)已知函数

(1)当a=-1时,求函数f(x)的单调区间;

(2)若函数的图象与直线y=ax只有一个公共点,求实数b的取值范围。

 

查看答案和解析>>

科目:高中数学 来源:2010届江西省高三年级数学热身卷(文科) 题型:解答题

(12分)已知函数

(1)当a=-1时,求函数f(x)的单调区间;

(2)若函数的图象与直线y=ax只有一个公共点,求实数b的取值范围。

 

查看答案和解析>>

同步练习册答案